
Introduction to Polymer Physics
Dr. Prateek Kumar Jha

Department of Chemical Engineering
Indian Institute of Technology-Roorkee

Lecture-47
Zimm Model – II

Welcome in the last  lecture we have been discussing the Zimm model that accounts for the

hydrodynamic  interactions  present  between  beads  on  a  polymer  chain.  We  define  those

interactions as coming from the fact that the force acting on any particular bead basically results

in a flow field around it and that flow field in turn also affects the other particle in the system and

we have used the language of mobility matrix to relate the effect of forces acting on different

beads on the velocity of a given particle.

So, we have been doing the derivation of Zimm model not really going into all their steps but

looking at the main ingredients because as I mentioned that the actual the derivation is quite

tedious in the books but the main steps I am trying to illustrate and then I hope to come to the

main conclusions in this lecture and try to demonstrate what exactly we can get by doing the

Zimm model. 

So, just a quickly recap what we have been able to do so far is that we have developed the 

equation of motion or the Langevin equation under certain approximations and is given by-

∂r⃗
∂ t

=∑
m

h (n−m)(k ∂2

∂m2 r⃗m+ f⃗ m)

So, now just like what we did in the case of Rouse model we wrote the equation in terms of the 

equations for the Rouse modes. So, I will use a similar linear transformation transformation 

because the boundary conditions remain same of course since the PDE is different the final 

answers will be different. So, we will use the linear transformation that is we defined the variable

Xp (t) as-



Linear Transformation : X⃗ p (t )=
1
N
∫
0

N

dncos( pπnN ) r⃗ (n ,t )

In fact we can also do the same inverse transformation from Xp to r once we get the answer in 

terms of Xp. And if I use that, what we get one solution is the expression in terms of Xp we can 

call them the Zimm modes now if you prefer, and this is-

∂
∂t

X⃗ p (t )=∑
q

h pq (−k q X⃗q+ f⃗ q )

In fact what we had is very similar to what we had in the Rouse case except that now we have a 

summation up appearing on the right hand side. So, just to recall what we had in the case of a 

Rouse model is-

ζ p
∂
∂t

X⃗ p=−k p X⃗ p+ f⃗ p

There the motion of the bead was affected only by the forces acting on that particular bead. Now

since the bead motion is affected by other beads as well therefore on the right hand side we have

an additional summation happening and instead of a 1 by ζp we now have matrix hpq, so we

actually solve for hpq and hpq can be written in terms of the function h that we have got earlier

something like this-

hpq=
1
N2∫

0

N

dn∫
0

N

dncos ( pπnN )cos (qπmN )h (n−m )

If I now solve this what I do get is-

hpq=
√N

(3 π3 p )
1
2η sb

1
2N

δ pq



We get something like this which is a diagonal matrix because of the presence of the term δ pq

so   hpq its diagonal matrix. And the term 
√N

(3π3 p )
1
2 ηsb

1
2N except the δpq I can write like some

hpp because it is a function of p alone not q. So, then going back to the equation I had earlier and

the relation for hpq we have derived what we do get is-

∂
∂t

X⃗ p=∑
q

hpp δ pq (−k q X⃗q+ f⃗ q )

Which in turn gives me something that is similar to what we had for the Rouse model of course

there are certain approximations in the actual derivation but the final answer looks same as the

Rouse model-

ζ p

∂ X⃗ p

∂ t
=−k p X⃗ p+ f⃗ pwhereζ p=

1
hpp

So, just like we what we had in the Rouse model we also have to do the p = 0 case separately and

for p = 0 case it turns out that-

ζ 0=
3
8

(6 π3 )
1
2η sb√N

So, after doing the full solution within the approximations that we have made so we have first

made the Stokes approximation then we got Oseen tensor as the expression for the mobility

matrix  then  we  made  the  pre  averaging  approximations  and  some other  approximation  and

finally what we have been able to is to write the equation in terms of a mathematical form that is

very similar to what we had for the Rouse model because we only had diagonal terms appearing

in the expression of hpq because of presence of the Kronecker Delta, δpq that is only after all those

approximations, if we would have not made the approximations of course this would not really

look similar to what we have got. Nonetheless the key scaling results would still hold true even if

we relax some of the assumptions that we have made they are simply made for mathematical

simplicity. 



So, now if we talk about the center of mass diffusion we have the relation that was same as for

the center of mass diffusion of the Rouse model except the ζ value is different in this case. So,

we have-

D=
k BT

ζ 0

∝ 1
√N

That tells me that the diffusion still decreases by N but with an exponent 1 by 2 with an exponent

that we have for Rg in θ solvent i.e.

Rg N
1
2 for θ solvent

So, that is how we have established that the static scaling that we get for R g is the exponent of

that scaling is same as the scaling a dynamical scaling we get for the diffusion coefficient. 

We can also define the relaxation times just like we did for the Rouse model which in this case

would give-

τ p=
ζ p

k p

=τ1 p
−3
2 here τ1=

ηs

√3 π

(b√N )
3

k BT

Since this is what we have got for Zimm model in a theta solvent case. If I want to do a Zimm

model in a good solvent case then we also have to incorporate the effect of excluded volume that

we have ignored so far.

So if I am doing the Zimm model in the good solvent case what we have is in addition to the

spring energy we also have excluded volume that we include by adding an additional force which

we have discussed when we have been discussing excluded volume earlier in the course-

U 1=
1
2
vk BT∑

n ,m

δ ( r⃗n−r⃗m )



And then again we will solve an equation that we have got in the θ solvent case except that again

the ζp values will be different for the good solvent case. So, on solution we will get something

like this-

ζ p

∂ X⃗ p

∂ t
=−k p X⃗ p+ f⃗ p (t )

Here now –

ζ 0
−1

=
1

ηsN
νb

And 

ζ p
−1

=
1

ηsN
νb

pv−1

Using this relation which implies D proportional to 1 by Nν where ν is like whatever we have got

for the static scaling and then-

τ p=
τ1

p3ν where τ1=
ηs N

3νb3

kBT

So, the key point was not really to go through all the derivation of Zimm model we have skipped

many steps in derivation but the key point was to demonstrate a couple of things. The first thing

is starting from the Rouse description we have a formal procedure to relax assumptions that

basically we have made in the Rouse model so we could incorporate dynamic interactions by

solving somewhat extended version of Langevin equation. 

We have used a similar linear transformation that we use in the Rouse model of course the math

is more complicated but the basic solution procedure remains somewhat similar of course we

have to make other approximations related to the flow field and so on that was not present in the

Rouse  model  so that  is  the  reason why Rouse  model  even if  it  is  wrong serves  as  a  good

fundamental  basis  on  a  good starting  point  to  start  thinking about  the  Brownian motion  of

polymer chains. These complicated models like Zimm model can be developed using the ideas

that we have in the Rouse model by making some or more relaxation to the assumptions that we

have made in their house model.



So both of them give you qualitatively same results that the diffusion coefficient will decrease by

increasing the number of repeating units  on the polymer chain or the number of beads in a

polymer model. But only the Zimm model is able to give the correct scaling that is found in the

experiments and it turns out that the scaling that we get from here that is what I refer to as a

dynamical scaling comes out to be same as what we have got in the case of Rg or the end-to-end

distance of a  polymer chain that  we referred to as a static scaling and therefore the scaling

relations even though we did not really describe in detail in the course serve a very important

role in the whole description of polymer physics the approach we have followed did not really go

into details of how we get the different scaling relations but a whole theory of polymer physics

can only be built can also be built just by looking at the scaling descriptions that are present and

try to build theories out of it and this is the approach that de Gennes followed in his book and we

have refrained from that kind of a discussion in this course.

We have tried to be somewhat rigorous so as to speak but in the end the scaling laws contain at

least equal physics if not more than compared to what we have been doing ok and this happens to

be true for not only polymer physics but many other phenomena in condensed matter physics and

therefore often there are alternate descriptions based on the scaling ideas that of course does not

include the mathematical details as much as we have been doing right here but it is basically

based on more physical intuition because to get the correct scaling exponent you have to make

the correct scaling model and that of course is by no means an easy job.

So, if you are interested in learning about the static and dynamical scaling behavior I refer you to

the book by de Gennes Scaling Concepts in Polymer Physics and you will find that many of the

results that we have obtained in our in this particular course and even many other results can also

be obtained purely by scaling arguments and which are it tells you about the powerfulness of the

arguments. It  turns out even after doing all  sorts of rigorous mathematics we cannot get the

correct scaling relation only to find that the scaling laws based on the correct physical intuition

give us the same scaling the correct scaling law without going deeply into all the mathematics

and this is what is beautifully illustrated by the example of Rouse and Zimm model. The Rouse

model is already complicated Zimm model is even more complicated. But if I start from the



scaling idea we can think of getting similar expressions without going into all the detailed math

okay. 

So, with that I want to conclude here and in the next lecture we will start talking about the flow

and deformation behavior when we depart from equilibrium and in a more macroscopic sense or

a microscopic sense then what we have so far been doing we have so far been looking be looking

at the motion at the level of a molecule or motion at a level of say a bead or a segment within the

molecule but if I look at the deformation at a macroscopic or a microscopic level it requires a

very different kind of a math that we know by the name of continuum mechanics and that is what

we will start in the next lecture. 

So, with that I stop here, thank you.


