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Brownian Motion- II

Welcome  in  the  last  class  we  started  discussing  the  Brownian  motion  and  so  far  we  have

discussed what Brownian motion is and how do we characterize the magnitude of fluctuations by

using correlation functions- the autocorrelation and cross correlation. 

So, now I will take it further the discussion that we started so what we said is the autocorrelation

function is an even function by the time translational invariance that was like only the difference

between the two point time points is important not the origin of time and what we also said is

due to scientist name Onsager the same property also holds for a cross correlation function. So,

just to recall-

Cii (t )=C ii (−t )

Cij (t )=Cij (−t )

Cii (t )= ⟨∆ xi (t ) ∆x i (0 ) ⟩

Cij (t )= ⟨∆ xi (t ) ∆x j (0 ) ⟩

Both of them essentially fluctuate around a mean value x́ i so ∆ xi is the deviation from the

mean value with time.

So, now there is a detail here that is not really of much concern to us but it must be stated that

although the first one is quite general the second one only applies to two properties that depend

on positions and momentum of particle this is true for the dipole movement that depends on the

position of particles. It is actually true for many properties that only depends on position and

momentum. It is not true for other properties that we typically do not care about in polymer

physics but you can read about the cases where this relation is not true.



So, now what this evenness of these functions, so I am doing like Ct versus t it is true for both,

Cii or Cij it tells me that if I say go forward in time or if I go backward in time I would essentially

see the same behavior that is to say that if I have say a video playing and if I do like reverse the

video I play it like in the backward direction I would see the same things happening right that is

of  course not  true  for  actual  video because  if  some things  happen in  some direction  in  the

forward direction we will see things happening in opposite direction. So, let us say a person dies

in the video you cannot go back because you will not have a death occurring in the backward

direction right.  So,  but  it  is  only true it  will  be true when the system which is  equilibrium

because at  equilibrium the  rate  of  forward processes  become same as  the  rate  of  backward

processes that is at equilibrium it does not matter if I am going in the positive time or if I am

going in the negative time. 

Now this very concept has a much philosophical I would say philosophical significance in terms

of how we view life. For example when we view life we always think about time that time is

passing and we are going from here to there and time for us only goes in one direction we cannot

go back in time we cannot do a time travel in the backward direction and this is true because we

are not in a state of equilibrium. If we are in a state of equilibrium then we could be it could be

possible for us to go in the minus time and actually thermodynamics present a limitation that

prevents time travel in the first place because since things have a tendency to go to equilibrium

we cannot really go back in the opposite direction because in one direction we are going towards

equilibrium in opposite direction we are going away from equilibrium and only the direction

towards the equilibrium is favored not the direction opposite from the equilibrium only when we

reach equilibrium we can say that now the time is immaterial that for us of course the time when

we die because then we are nested of equilibrium and no time travel is any way meaningless.

So, this really explains our understanding of forward and backward processes. So, with time we

can have forward processes backward processes once we have reached equilibrium then the rate

of both the forward and backward processes become equal and now it does not matter if I go in +

t or – t. In fact if you think of like all the laws of nature it is only the thermodynamics the



tendency of system going to equilibrium that poses a limitation to go to –t because in every other

equation let us say Newton's laws of motion with no problem I can put a -t instead of t and the

equation is still  valid right.  So,  we can think of a car going in this  direction or car coming

backward there is no contradiction if I put t = -t in the laws of motion. Only in thermodynamics

we have to decide upon a direction of time and that determination is by the tendency of system to

go towards equilibrium and that is why we say that once we have attained the equilibrium state

then it  does  not  matter  then we can go in  + t  or -  t  and this  particular  principle  that  I  am

discussing  is  what  is  known  as  a  time  reversal  symmetry  that  applies  for  fluctuations  at

equilibrium. 

A video being played will look the same in the forward or backward direction you can think of a

system at equilibrium where it must show these two strong properties that we have discussed

time translation  invariance  and time  reversal  symmetry they are  better  ways  to  characterize

equilibrium then say for example to look at a property that is being constant because a system

can be in some sort of in a steady state for example let us say water is flowing in a pipeline this is

not an equilibrium system water is moving at a velocity V properties are indeed constant the

density of water the velocity of water and so on but it does not satisfy the time transnational and

time reversal symmetry if we go back in time or if I change the origin of time that particular

behavior will not be the same it will depend on the origin it will depend on the direction of the

time and so on. 

So, only the systems which are at equilibrium which are at thermodynamic equilibrium so as to

speak  will  satisfy  these  two  relations  and  that  is  why  they  become  very  critical  to  our

understanding of Brownian motion occurring at equilibrium.

So, now if I start thinking in terms of this time reversal symmetry now we can see why the cross

correlation function has to be even because if I start from time reversal symmetry then-

⟨∆ x i (t ) ∆ x j (0 ) ⟩=⟨∆ x i (−t ) ∆ x j ( 0 ) ⟩



And then my time translational invariance which anyway holds true for both autocorrelation and

cross correlation function this has to be equal to-

⟨∆ x i (0 ) ∆x j (−t ) ⟩=⟨∆ x i (0 ) ∆x j (t ) ⟩

Now it turns out that instead of looking at just the autocorrelation or cost correlation in terms of

the  deviation  from  a  mean  value  it  is  sometimes  more  convenient  to  talk  in  terms  of

displacements instead of the deviation from a mean. Let us say if I am looking at the position of

a particular particle in the system. Now there is a mean position but the mean position can be like

anywhere in  the system the mean position is  not really constant for different particle  in the

system what we can specify is the initial position and talk about displacements from that position

and in that sense we can define the displacement correlation function and which will become

useful to us in what we will do next. 

So, let me also define what is known as displacement correlation function which can be-

⟨ (x i (t )−x i (0 ) ) (x j (t )−x j (0 ) )⟩

So, although I talk about displacement it should not always be in terms of like only the length

displacement does not have like a meaning in terms of dimension it can also mean for example

change in any property from an origin of time how much the property has changed and that

change is what I call displacement. 

So, this I can also write in terms of deltas because the mean values anyway will cancel out. So,

this will also be equal to-

¿ ⟨ (∆x i (t )−∆ x i (0 )) (∆ x j (t )−∆ x j (0 ) )⟩

So if I expand this thing what I get is-

¿ ⟨∆ x i (t ) ∆ x j ( t ) ⟩+⟨∆ x i (0 ) ∆x j (0 ) ⟩−⟨∆ x i (t ) ∆ x j (0 ) ⟩−⟨∆ x i (0 ) ∆ x j (t ) ⟩

Now in this case the first two terms are same by the time translational invariance. Since both of

them are separated by 0 t - t is 0 and 0 - 0 is 0 and the last two terms are also same by time



reversal symmetry, so t - 0 is opposite of - t so 0 -t is - t actually we use both time reversal

symmetry and time translation invariance to get the second result. So, what I get then is-

2 [ ⟨∆ x i (0 ) ∆ x j (0 ) ⟩−⟨∆ x i (t ) ∆x j (0 ) ⟩ ]

So,  now just  like  we can  have  a  displacement  correlation  function.  We can also talk  about

something like  a  velocity correlation  function  that  would  characterize  the  rate  of  change of

position instead of positions themselves again keep in mind that the system is still at equilibrium

and we are talking about the motions because of fluctuations not really a bulk velocity for the

system at non equilibrium, in this case equilibrium is still holding.

So, we can also define the velocity correlation function, again the velocity is the rate of change

of any property with time not really only the position with time the velocity is defined in a more

general sense. So, maybe I will put the velocity under quotes just like the displacement just to

characterize that it is for any property not really only for the change in position. So, this I can

define as-

⟨ x́i (t ) x́ j (t ' ) ⟩

that is the velocity correlation for i and j at time t and t ’ .  We have not yet said that this will

also satisfy the time translational invariance so we have written in terms of t and t ' . So, now

and dot represents the time derivative. So, now this I can write as-

⟨ x́i (t ) x́ j (t ' ) ⟩=⟨ ∂
∂ t

∆ x i (t )
∂

∂ t '
∆ x j (t ' )⟩

So, now this I can write as the change in ∆ xi with time and the change in ∆ x j where we

have t '  now and I can move the derivatives outside this would be-

¿
∂2

∂t ∂t ' ⟨∆ x i ( t ) ∆ x j ( t ' ) ⟩



Now the first thing I can do is I can write ⟨∆ x i (t ) ∆ x j (t ' ) ⟩   as ∆ xi ( t−t ' )∆ x j(0)  this comes

by virtue of the time translational invariance and then we can note that now we have a function

that is some function of t - t '  So, what it means is if I do the derivative with respect to t '

this would be minus of the derivative with respect to t just because the function is of t - t '   so

the derivative with t '  should be minus off derivative a with respect to t. So, this would be I

can write this as something like-

¿−
∂2

∂ t 2 ⟨∆ x i (t−t ' ) ∆ x j (0 ) ⟩

So, now I can express the velocity correlation function in terms of the cross correlation functions

of the positions or again the positions can really mean the actual value of whatever property we

are looking at and then using that we can go ahead and connect to the displacement correlation

function and that is what we will do now. So, now what we can write from the previous thing is-

⟨ x́i ( t ) x́ j (0 ) ⟩=−∂2

∂t 2 ⟨∆ x i ( t− t ' ) ∆ x j (0 ) ⟩

And we already know the displacement correlation function-

⟨ (x i (t )−x i (0 ) ) (x j (t )−x j (0 ) )⟩=2 [ ⟨∆ xi (0 ) ∆ x j (0 ) ⟩− ⟨∆ xi (t ) ∆x j (0 ) ⟩ ]

So, if I take a second derivative with respect to time on both the sides. I get-

∂2

∂t 2 ⟨ (x i (t )−xi (0 ) ) (x j ( t )−x j (0 ) ) ⟩=−2
∂2

∂ t2
⟨∆ xi (t ) ∆ x j (0 ) ⟩

This is the velocity correlation function that we have derived. So, what it means is I can write

this as-

⟨ x́i ( t ) x́ j (0 ) ⟩= 1
2

∂2

∂ t2
⟨ (x i ( t )−x i (0 ) )( x j ( t )−x j (0 ) )⟩



This  means  we can  write  the  velocity  correlation  function  as  half  of  the  secondary  second

derivative with respect to time of the displacement correlation function. 

So, far we have been like setting up the language to discuss the Brownian motion and we will

extend that of course to polymers in the classes that we come later.  So, in the next lecture I will

start  from this  particular  this  particular  point  and  take  the  discussion  further  regarding  the

Brownian motion of the systems in general and of course we then take it to polymeric systems

with that I conclude here, thank you.


