
Introduction to Polymer Physics
Dr. Prateek Kumar Jha

Department of Chemical Engineering
Indian Institute of Technology-Roorkee

Lecture-32
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Welcome in the last class we have been discussing the toy model that we can use to find the

Helmholtz free energy density f of ( , T) and the particular toy model we have been working onϕ

is  the lattice model  of solutions.  We will  take it  further  and discuss how we can derive the

expression for F the Helmholtz free energy density for this model of solutions and then using that

we can analyze the behavior of polymer solutions again using a lattice model that is basically an

extension of what we are doing right now.

So, just to recap the basic assumption that we have made so far is instead of being anywhere in

the 3 dimensional space the solute and solvent molecules of my model can only occupy positions

on a lattice which can be a lattice in 2 dimensions three dimensions and we are assuming that

there are only 2 components solute refer as P and I will use the red color for the solute and a

solvent which I refer as S and I am using a green color for the solvent and these positions on the

lattice are either occupied by a solvent or a solute and of course as we will discuss there can be

many, many possible confirmations or configurations representing the position of the solute and

solvent molecules on the lattice and this is one particular configuration that I have just drawn. 



We have Np solute molecules in red color and Ns solvent molecules in green color and both of

them for sake of simplicity are assumed to occupy the same volume that is the volume of solute

is equal to volume of solvent is equal to the cell volume of my lattice that is the volume of any

particular cell that of course same for all those cells and let us say this quantity is equal to some

Vc. Of course we can generalize to different volume of solvent and solute but that would take

away the simplicity of the model has in any case the model is at best qualitative because we have

already restricted the motion of molecules to be on a lattice instead of being on a 3 dimensional

space.

So, given this particular approximation I can define the volume fraction of solute as-

Volume fraction of solute=ϕ=
N p

N p+N s

∨
N p

N tot

Similarly for the solvent this has to be (1 – ) because the positions are either occupied by aϕ

solute or a solvent this has to be-

Volume fraction of solvent=(1−ϕ )=
N s

N p+N s

∨
N s

N tot

Here, N tot=N p+N s .

What we also assume in this model is a solute or a solvent molecule in the system only interact

with its closest neighbors that is we ignore all the interactions with neighbors which are farther

off  than  the  closest  neighbor  of  course  that  will  only  work  for  very  short  range  kind  of

interactions, the kind of things that we have assumed in the excluded volume theory that we have

discussed earlier and between the neighbors they interact by so we can say interaction energy

between  neighbors  is  ϵpp  ϵps  or  ϵss depending  on  what  combination  it  is.  So,  for

example ϵpp is for solute- solute ϵps for solute-solvent and ϵss  for solvent- solvent. 

So, if we assume these values of interaction energy between closest neighbors we can talk about

the total energy of the lattice in a particular configuration that is for a particular arrangement of



solute and solvent molecules the lattice and this I can write as the following energy of or total

energy of configuration i is given as-

Total Energy of Configurationi=E i=ϵpp N i
pp
+ϵpsN i

ps
+ϵss N i

ss

Here

N i
pp
=number of solute−solute pairs; N i

ps
=number of solute−solvent pairs∧N i

ss
=number of solvent−solvent pairs.

So, this is however the total energy of a given configuration and of course there can be many 

possible confirmation that we can find by the convenient tricks how many confirmations we do 

have in the system. So, before we go further I will define a quantity that is known as the partition

function using which I can discuss the free energy of the system. So, I will take a small detour 

and define what is known as the partition function often represented as Z and Z by definition is-

Z=∑
i

exp(−E i

k BT )=∑
i

exp (−β Ei )

Here i= all configurations, exp(−E i

k BT ) = Boltzmann Factor and β=
1

kBT

So, essentially what Z is the sum over the Boltzmann factors of all possible confirmations or

configurations or what is also known in statistical mechanics as microstates. If you have had a

course on static  mechanics  you must  have  known this  as  the sum over  all  microstates.  But

essentially it is all possible confirmations or configurations which are present in the system. We

simply compute the Boltzmann factor and sum them up and that is what we get is known as the

partition function. 

So, there are two major roles of this Z in the context we are discussing and that will suffice for

the discussion that we will do in polymer physics course in general. So, the significance or the

role of Z are essentially two-

1. We already have said that probability of occurrence of any particular configuration, so

probability of configuration i to occur let us call this some pi it should be proportional to

the corresponding Boltzmann factor this we had discussed earlier i.e.



pi∝ exp(−Ei

kBT
)

so Z in some sense work as a normalization factor and why is that because if I simply

sum over all the configurations the Boltzmann factors basically we get a net sum that

represents the total probability of all possible confirmations and so if I divide the quantity

we have-

pi=

exp(−Ei

kBT
)

Z

I should get the absolute probability for that configuration to occur because we are simply

dividing  the  probability  of  that  particular  configuration  divided  by  the  sum  of  all

configurations and because sum of all probabilities must =1. Therefore,
∑ pi=1

2. Partition function is as generating function for other energy functions. For instance all

that means is like if I know Z, I can get to know all the other energy functions that I need

in thermodynamics. So, for example if I do something like that-
Ei exp (−β E i)

Z
¿

−∂ lnZ
∂β

=
−1
Z

∂ Z
∂β

=
−1
z
∑
i

−Ei exp (−β Ei )=∑
i

¿

This expression by definition is the probability for the configuration i, as we have derived

earlier  and therefore this is sum over i Ei  pi so if I multiply the energy value for the

configuration with the probability of occurrence and I sum them up what I know, what I

get is what is known as mathematical expectation or the average value, so this gives me

essentially the expected expectation or mean value of the energy. So,
∑

i

Ei pi=É

So, we can see from here that if I want to know the mean energy of the system we can do

some manipulation with Z and we can we can get that.  I will  not go through all the

possible other variables but the basic ideas applied. If I know the Z, I can find other

thermodynamic functions with much ease that is the only thing I need to know.



It turns out that the Helmholtz free energy is-

F=−kBT lnZ

And Helmholtz free energy density is-

f =
F
V

=
−k BT

V
lnZ

If I want to find the Helmholtz free energy density which was the objective that we started with

all I need to know is my Z because if I know the Z and if I know the volume, volume of course

we know from the lattice model itself the number of cells multiplied by the volume gives me the

volume of the lattice and so knowing the Z we can get the function f.

So,  now the  question  is  like  how we find  the  Z so  to  get  Z  there  are  of  course  couple  of

approaches either we can do a simulation look at all the possible configurations the system has or

the most probable configuration confirmations get the energies and using that try to compute the

partition function. It turns out that we do not directly get the partition function but something of

that sort, I am not getting into that. What I will discuss is what is known as the mean field theory

that really simplifies our task and give us a good analytical expression for the for the Z partition

function Z. 

So, the mean field theory and of course just like the name says is the mean field it is actually an

approximation than being exact and the approximation is that what we assume is instead of the

different confirmations having different energies we assume that all the confirmations have a

mean energy É . So, the assumption is like all configurations have mean energy É  because

if I do that then Z which was summed over all the Boltzmann factors-

Z=∑
i

exp (−β Ei )

Now if all the Ei  is approximated to be equal to É  then this is simply exponential of - beta

É  which then would be something like-

Z=W exp (−β Ei )



Where W is number of possible configurations, and we know that Np  is solute molecules Ns  is

Solvent  molecules.  The  number  of  ways  to  arrange  them on the  lattice  is  given  by simple

common tricks and it is equal to the number of possible confirmations. The W is-

W=
(N p+N s ) !

N p! N s!

Although we have taken example of solute and solvent you can have apples and oranges the

number of ways to arrange the say 5 apples and 10 oranges on 15 sites is given by like 15

factorial divided by 5 factorial multiplied by 10 factorial this is a standard formula.

So, we know what W is, the only challenge is how to get É . So, we have already said that my

Ei is-

Ei=ϵ ppN i
pp
+ϵ ps N i

ps
+ϵss N i

ss

Here, Ni
PP is the number of solute- solute pairs and ϵpp   is the interaction energy between the

molecules in that pair, the same thing for solute solvent pairs and same thing for solvent- solvent

pairs. So, É  has to be average of that where Ń is now the average number of pairs-

É=ϵpp Ń
pp
+ϵ ps Ń

ps
+ϵss Ń

ss

Here, Ń PP is average number of solute- solute pairs Ń PS is the average number of solute

solvent pairs and Ń SS is the average number of solvent- solvent pairs and this quantities we

can get by simple probability rules. So, we know that each of the sides can be occupied by the

solute with the probability  and then let us say that particular site is occupied by the probabilityϕ

 then it has z neighbors small z neighbors we have z is the coordination number and they can beϕ

a solute also with a probability  because  is the fraction of the solute molecules in the system.ϕ ϕ

So, if I think of any position on the lattice it may contain a solute molecule with a probability of

 and this will then have z neighbors which is = 4, 4for square lattice and each of them can alsoϕ



be a solute with probability  each. So, if I multiply  with z , I get the total number of the totalϕ ϕ ϕ

probability of having a pair of solute and solute in a given side and this if we multiply with the

total number of sides I should get the total number of such solute- solute pairs in the system. The

only thing is that if I am doing this way I always do a double count because when I come and

look at the neighbors of this one side then we will again find that this also has 4 neighbors, one

of them that is already counted and so we always have a double counting of the pair's if we

proceed in the way I have suggested. So, we have to divide this by 2 we had 2 accounts for the

double counting and this is then-

Ń pp
=

N totϕ⋅ zϕ
2

=
1
2
N tot zϕ

2

The same thing applies for a solvent-  solvent pair  except  that  now the probability to find a

solvent on a given side is 1 – , again we have z neighbors and they can also be a solvent with aϕ

probability of 1 –  again we have double counting and now what we get is this, ϕ

Ń ss
=

N tot (1−ϕ )⋅ z (1−ϕ )

2
=

1
2
N tot z (1−ϕ )

2

The same idea can be applied for solute- solvent pair.  So, now every site can be a solute with a

probability of  and then it can again have z neighbors which can be solvent with a probabilityϕ

of 1 –  this time we do not have to divide by 2 because we are looking at pairs of differentϕ

species. So, I am looking at the solvent neighbors of every side. So, if I go to the next side again

I will look at solvent neighbors assuming that the site is occupied by the solute. So, in this case

we do not have any double counting in the picture.

Ń ps
=N totϕ⋅ z (1−ϕ )

So, using these 3 formulas I can plug that in the equation for  É and what I will get is the

following is this,-

É=ϵpp( 12 N tot zϕ
2)+ϵ ps (N tot zϕ (1−ϕ ))+ϵss(12 N tot z (1−ϕ )2)

¿
N tot z

2
[ϕ2ϵpp+(1−ϕ )

2ϵss+2ϕ (1−ϕ )ϵ ss ]



So with this I stop here in the next lecture we will take it further and go on to find the expression

for the Helmholtz free energy density for the lattice model and using that we can then extend and

talk  about  the  mixing  and  phase  behavior  that  we  have  discussed  earlier,  now  given  the

functional form of the Helmholtz free energy density. 

So, with that I stopp here, thank you.


