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Welcome  in  the  last  class  we  have  been  discussing  about  the  mixing  and  phase  separation

behavior of solutions that we can get using the Helmholtz free energy density and we have talked

about various regions of phase separation- the Metastable and unstable regions and so on. 

So, basically just to recall what we have said so far is if we want the system to phase separate it

must have the Helmholtz free energy function must have regions where f ’ ’  is less than 0 that

is a requirement for phase separation and of course I have already said that  there is a possibility

that the system is completely convex but in that case we will have a complete phase separation

no coexistence so,  the solute  will  face separate totally in one phase and solution phase will

contain only the solvent.

If I want to have some sort of a coexistence of solute in the two phases the free energy curve

should look something like this and in that curve I noted that there are two inflection points and

if I want to know the phase coexistence I should draw a common tangent that will tell me these

points will correspond to the concentrations at equilibrium when the two phases coexist and then

we can separate the regions on the curve and between the points and I said that this particular

reason that is in between these two points are known as the unstable region and if I look at the

other two reasons, that is right here and right here then these two regions are referred as the

metastable region and the difference here is the following that if we are in the unstable region

any small difference will lead to phase separation but if we are in a metastable region we are in

some sort of a local minimum small disturbances will not lead to a phase separation it can remain

there for very long time only a large disturbance can take it to a phase separated state.



So, now we can also talk about something referred as a critical point and the idea is something

like this since the function f is also a function of temperature and in so forth we have not really

discussed the role of temperature. But temperature plays a very important role if I look at the

temperature versus composition phase diagram the graph looks something like this.

So,  the  graph  will  change  as  the  temperature  changes  as  I  am looking  now at  the  role  of

temperature versus . So, this corresponds to these red dots here and then we can say that myϕ

unstable region is here on the plot, below the spinodal and the metastable region are between the

spinodal line and the binodal line, so this is unstable and this is metastable and this again is

metastable. 

So, earlier what we have shown here the temperature was assumed to be constant and now I am

telling you that what happens when temperature is changed and this point where the binodal and



spinodal meets is referred as the critical point and referred as TC. I can also define a critical

composition ϕc and the idea here is that if  T is higher than TC then there will  be no phase

separation as you can see in the plot so when T is higher than TC we are above the envelope of

phase separation, so there is no phase separation taking place. If T is less than TC then phase

separation can occur and the phase separation can be unstable or metastable depending on what

concentration we are lying in. 

So, if I now look at that particular function f of  as a function of temperature. This graph shouldϕ

also change to reflect the fact that there is no phase separation for T higher than TC and we know

the behavior when there is no phase separation.

When  there  is  no  phase  separation  when  my  graphs  would  look  like  that  because  that

corresponds to f double prime higher than 0 that is no phase separation. This would happen for T

higher than TC. As soon as the T becomes smaller than TC we should start to have a phase

separation characterized by the shape of graph like this that we have already used earlier. So, just

at the brink of the critical point you can imagine that there is one point where inflection has

begun to start just higher than the critical point we do not have any phase separation and below

the critical point we start to have a phase separation. So, we will use this idea over and over in

the polymer solution theory. 



We will  use  something  known  as  solvent  quality  that  depends  on  temperature  in  place  of

temperature but let us come back to that later. What happens especially in the case of polymer

solutions is sometimes the system shows slightly opposite behavior than what we have seen here.

So, now in the case that we have discussed earlier that was this particular that case that was right 

here in this case what we saw was the T higher than TC there is no phase separation but if I look 

at this particular graph then for T less than TC there is no phase separation. So, solutions with so 

this particular behavior are known as UCST or upper critical solution temperature and things 

with show this behavior are known as LCST or lower critical solution temperature.

So, there are two kinds of behavior that we can have in temperature versus composition space

you can either  have  a  UCST behavior  or  a  LCST behavior, accordingly the metastable  and

unstable regions will also change. So, in this case we have the metastable and an unstable region

as well.

So, now everything said and done we still do not know what the function f of  is if we know itsϕ

particular say I can talk about the mixing and phase separation behavior. But we have so far not



discussed how we get  that  particular  function f  of ( ,  T) that  is  the Helmholtz  free energyϕ

density. 

So, now I will try to discuss how can we get that particular function again we will derive it for a

liquid solution that is continuing a binary system of a solute in a solvent and then we will extend

the idea to a polymer solution and then once we have done that then we can talk about the

mixing and phase behavior of polymer solutions okay. So, obviously there are two ways to get f

of ( , T) one way is by theory as with everything else either we can do some kind of a theory orϕ

some kind of an experiment. If you think of doing an experiment one possibility is for example I

measure  the  osmotic  pressure  versus  the  volume fraction  favorable  to  measure  the  osmotic

pressure I do not know how we will do that but let us say we have some mechanism to measure

the osmotic pressure as a function of composition we know osmotic pressure depends on the

function f so we can get f from there. 

If on the other hand if I am looking at a theory where should we start? So I will start with some

basic ideas of classical I would say classical mechanics and then see like how exactly we go

about getting the energy functions that we need. If you have done thermodynamics you must

know that F of ( , T) is related to the equation of states that we derive. Again we typically do notϕ

derive it, it is typically either experimentally obtained or there is some correlation that people

hypothesize or things of that sort. But if we have to start from theory let us say for ideal gases,

we know that we can use kinetic theory and obtain relation for PV = NRT.

So, let us go back there let us try to see how can we build a theory to determine the function f of

( , T) so in classical mechanics ultimately everything comes down to something known as aϕ

classical Hamiltonian. In fact the same idea also apply in quantum mechanics except that the

Hamiltonian there is an operator as opposed to a function expression here. So, the Hamiltonian is

defined in terms of the positions of the constituent particles and their momentum. So, for any

system that contains some collection of atoms if I want to find the energy of the system as I

should start with the classical Hamiltonian that will depend of course on the position of particles

and momentum of particles.

H ( {r⃗i } , { p⃗i })



Here r⃗ i= r⃗1, r⃗2 , r⃗3……………. r⃗n refers ¿ position of particles

p⃗i= p⃗1 , p⃗2 , p⃗3…………. p⃗n refers¿momentumof particles

Now as we know from classical mechanics this would be composed of two terms- a kinetic

energy term and a potential energy term. So, kinetic energy term I can write as

K .E=∑
i

p⃗i
2

2mi

And then you will have a potential energy which in this case will be dependent on the positions

of particles because ultimately where this energy the energy comes from the energy comes from

the interaction between particles and we have discussed earlier that the interactions eventually

depend on the positions of particles and the distances between them. So, there is no velocity

component that comes typically in the potential energy, potential energy typically I would say

always for all the cases we will do will only be a function of the positions of particles because

ultimately the positions can change with time this will give rise to different interaction energy

between the particles in the system and eventually the total energy of the entire system. 

P .E=U ({r⃗i })

H ( {r⃗ i } , { p⃗i })=∑
i

p⃗i
2

2mi

+U ( {r⃗i })

So, now we have a way to find the classical Hamiltonian of the system, the only difficulty here is

if I look at the phase space of a large system that is thermodynamic in nature. Let us say if we

look at a liquid solution and we talk in terms of the energy of that system. We are talking about a

collection of like moles of the molecules that are present of solute and solvent if I think of say

moles of solute and solvent we have moles multiplied by 3 coordinates moles multiplied by 3

momenta that is 10 to the power 23 to the power 10 to the power 24 both of them and of course

the keeping track of all those positions and momenta is simply impossible even if we managed to

do it for a large system of course we can do it for a smaller system that is the basis of what we

discussed as the molecular  dynamics but for large systems it  does not  really make sense of

talking about the positions and momentum of particles because even if we are able to compute



that by some means it is very difficult to make sense of those positions and momentum and try to

relate the energies to those quantities.

So, what typically people do in most of classical mechanics or classical physics is we make some

sort of toy models and what the toy models do is they decrease the phase space of the system that

is  to say that in reality the system will  be having I would say a hundred thousand different

coordinates one hundred thousand different momenta if I make at toy model I will decrease by an

order  of  say thousand or  ten  thousand.  So,  that  I  will  work with say ten  positions  and ten

momenta things of that sort something that is more tractable and something that allows us to

make some sort of a theory based on that.

So, the basic scheme is something like this so how do we get f of ( , T) we have to get from theϕ

positions and momentums because of course if I get the Hamiltonian I know everything else but

this is impossible to track. So, what we do is we make a toy model and we get a Hamiltonian for

the toy model and using that we can get f of ( , T). Let us call it some ϕ
~
f because in any case it

depends on the model of course the models model dependent and we hope that this  
~
f  is

approximately equal to the actual f of ( , T).ϕ

So, this is the typical scheme that is being followed if you think of like toy models how do they

work we have already demonstrated the whole idea of random walks thinking of polymer chains

as walk of a drunkard left and right was a toy model and it was able to give us scaling laws. So,

in a similar vein we will discuss the toy models that give us f of ( , T) and we hope that theyϕ

capture the thermodynamic behavior of polymer solutions but we start with liquid solutions and

see how we go.

So, one of the toy models will discuss is known as the Lattice model of solutions and the basic

scheme here is the following so instead of assuming that the solute and solvent particles let us

again the solute particle is represented by P and solvent by S, so of course in a real system the

solute  and  solvent  particles  can  move  anywhere  and  they  will  have  very large  numbers  of

positions and Momentum's or the phase space to reduce the phase space what we assume is these



molecules move on a lattice that is to say that they cannot really move in a continuous space they

are moving in some sort of a grid and let me represent the solute molecules by a red color and

solvent molecules by a blue color. So, you can have these cells of the lattice occupied by the

solvent molecules and of course the remaining slides are occupied by the solvent molecules. 

So,  again  we  can  talk  in

terms of say some Np solute

molecules  and  Ns solvent

molecules and what  we also

assume is the volume of each of

the  molecule  is  same as  the

cell volume that is to say the

volume  of  each  of  the

molecules  is  same  as  the

volume of the cell, let us call

this VC so 

VC = solute volume = solvent volume

So, of course this is clearly not true for the actual system because solute and solvent can differ in

size. But let us see like at least at a qualitative level whether this model is able to provide some

understanding or not of course we can make more generalities such as we can make the cell size

is different and things of that sort but that would anyway kill the simplicity of the model and any

hope to go towards a very large free space is I think futile because the number of molecules are

anyway large. So, given its weaknesses, given the simplicity that is of course telling us that it is

this cannot be true.  We will see how this model is still  very successful in giving the phase

behavior that of the in giving the function f of ( , T) and the phase behavior since we haveϕ

already discussed that if we have the function f we can predict the phase behavior. 



So, now in this particular model I can define the volume fraction in this case anyway thus the 

volumes of solute and solvents are the same so I can define the solute volume fraction as solute 

volume by total volume which is simply by-

ϕ=
N p vc

N p vc+N s vc

¿
N p

N p+N s

¿
N p

N tot

So, in the next class using this particular description we will go on to find out the expression for

the Helmholtz free energy density of the polymer solutions and then we will extend the idea to a

polymer solution in other polymeric systems.

With that I conclude, thank you.




