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Welcome so in the last class we have ended up discussing about the Monte Carlo simulations and

we give an example of these bead spring model and I already showed you the basic algorithm of

a Monte Carlo simulation. So today I will take it further and first tell you like how do we get the

acceptance and rejection probability and then I will tell you some practical tips for a Monte Carlo

simulation.

So just to recall the steps of the Monte Carlo simulation, so we start from a configuration which

represent 

{r⃗ i }

It indicate in the positions of bead then I do trial displacement for a bead chosen randomly. So

the key here is that is we should always choose with uniform probability that is like all the beads

must be chosen with equal probability if for example we are choosing if we are doing a large

number of Monte Carlo simulation. It should not be that a particular bead is chosen with lesser

probability compared to others of course that will be true only when we do a large number of

Monte Carlo steps and then we compute energy change due to trial that is –

∆U=U ( { r⃗i
' })−U ({r⃗i })

So keep in mind all the energy that we have discussed like the elastic energy and the excluded

volume interactions and Lennard- Jones interactions. They all depend on distances as soon as any

bead is moved all these interactions are changed and that is why we are interested in the energy

change from the move and then accept or reject the move using some function of  ∆U  if I

accept basically I set ri to ri’ and if I reject of course I do nothing. Then I repeat 2-4 until some

sort of convergence that I will elaborate in this lecture. So the first thing here is to determine



what the condition of acceptance or rejection should be and that is where we will use a condition

that is known as detailed balance that is very essential to the Monte Carlo simulation. 

The detailed balance essentially requires that when the system reaches equilibrium of course

when we start with random configuration we do not hope that we are at equilibrium but if I keep

on running it we do hope the system will reach equilibrium. When the system is at equilibrium

the number of forward transitions should be equal to number of backward transition if something

is going in that direction with some probability the reverse should also happen with the same

probability or the number of transitions should be the same in order to at equilibrium. So in most

Monte Carlo algorithm with demand the detailed balance to be true, detailed balance by itself

does not give me the function P, but it tells me which functions will be workable functions which

functions I can use that satisfies detailed balance criteria.

So the basic condition is the number of forward transitions equal to the number of backward

transitions. So let us say that we talk about two particular configurations- one of them I call ‘o’

and one of them I call ‘n’, the old and new configuration. Then the system at equilibrium will

have certain probability to be in configuration ‘o’ and certain probability to be in configuration

‘n’ and we do not  know essentially  what  the  probabilities  is  so  let  us  say N(o)  means  the

probability for configuration ‘o’ to occur and N(n) be the probability for n to occur at equilibrium

this is very important. So we don’t start from equilibrium but we want the detailed balance to be

valid from beginning of the configuration. 

So now of course when I am doing this trial displacement there must be a probability of going

from old confirmation to the new configuration. So let us say  (o to n) represents transitionℼ

probability from o to n and similarly the reverse can also happen (n to o) and we have transition

probability form n to o.

So now what the detailed balance demand is the number of forward transitions and the number of

backward  transitions.  The number of  forward transition  the  forward here is  old  to  new and

backward is new to old. So the number of forward transitions depend on the number of states that



correspond  to  the  old  state  multiplied  by the  probability  of  going  from o  to  n  or  must  be

proportional to the probability of being in the old state multiplied by the probability of going

from old  to  new. So  the  forward  transitions  will  N(o)  multiplied  by  (o-n)  so  only  thoseℼ

configuration which are already at o can go to n with the probability (o-n) and then similarlyℼ

only those which are at n can go to o with probability (n-o). So here-ℼ

N (o )π (o→n )=N (n ) π (n→o )

This is  the condition of detailed balance and now we will  see how does it  help to give the

acceptance or rejection criteria. So let us look at what does the transition probability is equal to,

so the probability of going from o to n depends on our algorithm, depends on how many trials we

make that are going from o-n and how many of those trials I accept. So let us say if α(o to n)

represents the number of trials from o-n or more specifically the probability of trials from o to n.

You can make of course many trials only the probability of trials that goes from o to n should be

considered multiplied by what is the probability of accepting those trials. So while α depends on

how I am doing the trial, acceptance will depend on the energy condition that I employ to reject

or accept the trial. So now-

equation1 for trials o
π (o→n )=α (o→n )acc (o→n )(¿n)

equation2 for trialsn
π (n→o )=α (n→o )acc (n→o )(¿o)

Using both equation 1 & 2 we write the detailed balance as-

N (n )

N (0 )
=
π (o→n )

π (n→o )
=
α (o→n )acc (o→n )

α (n→o )acc (n→o )

This sets the rule for the Monte Carlo algorithm, we can have some liberty in how I am choosing

a trial move, and we can have some liberty in how are we accepting or rejecting the move. But in

the end whatever we do it must satisfy this particular condition that comes from the detailed

balance.



The most common algorithm is the Metropolis algorithm that we will discuss next. So in the

metropolis algorithm what we do assume is I will make trials randomly in all possible directions

for the purpose of making trials I will not differentiate between any configurations. For example

I have 10 configuration possible then I can make trials both forward and backward with equal

probability only the acceptance criteria can differ. So in this case I will assume α to be the same

for both forward and backward transition and now I am left with-

α (o→n )=α (n→o )

N (n )

N (o )
=
acc (o→n )

acc (n→o )

So  now  finally  we  already have  discussed  something  about  the  Boltzmann  distribution  the

probability of the system being in the particular configuration depends on what is known as the

Boltzmann factor actually proportional to it. So in fact if I look at the ratio of probability of the

new and old configuration they will be essentially a ratio of their Boltzmann weights. That is for

the new one divided by the same thing for the old one.

exp (−βU (n ) )

exp (−βU (o ) )
=
N (n )

N (o )
=
acc (o→n )

acc (n→o )
=exp (−β∆U )

Where,  ∆U=U (n )−U (o )  and β=
1

kBT . Here T is the absolute temperature and kB  is the

Boltzmann constant and the whole term is Boltzmann Factor. The other way again to remind you

this  is  only  happen  at  equilibrium  although  we  start  making  that  particular  criteria  in  the

beginning detailed balance is only satisfied at equilibrium that is a demand that we are making

from the simulation.

So with this now we have a rule to perform the metropolis algorithm Monte Carlo-

acc (o→n )

acc (n→o )
=exp (−β ∆U )



Here again I can have some flexibility in terms of how exactly I am going to choose acceptance

probabilities them self but this particular ratio must satisfy this particular relation that we have

got from detailed balance.

So in the metropolis case we assume-

acc (o→n )=exp (−β∆U )

so when delta U is higher than 0 that means we are going to a higher energy state I will use

exponential of minus beta delta U and I will use one delta u is less than 0, if I am going downhill

in the energy we always accept the move if we are going uphill we accept the probability that is

given by exp (−β∆U ) .  Now to satisfy the  detailed  balance  that  we have here  the reverse

probability should simply be  exp (+β ∆U ) .  Now you can see if  I  take a ratio  for delta  u

greater than 0 case I will get exponential of minus beta delta u. If I take the ratio for delta u less

than  0  case  again  satisfy  the  detailed  balance  condition.  So,  this  becomes  my  metropolis

algorithm, my acceptance criteria is-

P (∆U )=Min[1, exp(−∆U
k BT )]

Here ∆U=U ( {r⃗ i ' })−U ( {r⃗i }) . Alright, so now if I go back to my Monte Carlo algorithm we

have figured out how to accept or reject the move. So I have looked that the probability of

acceptance rejection will be just my 1 - of that and now we are pretty much all set to do the

simulations. Now there are few practical tips here that we will now discuss. 

The first tip is like how exactly we are going to choose the trial displacement particularly how

exactly do we program that to question. So let us first start with that, so what should be the trial

so first condition is that I will randomly choose a bead that we can do by any kind of a random

number  generator  but  the  second  thing  is  like  what  should  be  how  exactly  we  update  the

coordinates. So we want to do for the chosen bead-

r⃗i→r⃗ i '



x i→xi
' , y i→ y i

' , zi→zi
'
(¿cartesiancoordinates)

Now there are many ways to do it, the trick here is we must choose displacements that goes in all

possible directions because ultimately you start to random configuration you don’t know what

the  ultimate  equilibrium  is  right.  So  it  is  always  better  that  we  do  not  bias  our  random

displacement our displacement should be able to explore the entire space. So to do that the way

we will do it is we start from the old positions set some maximum displacement and generate

numbers-

x i→xi
'
=xi+∆1 ( r1−0.5 )

y i→ y i
'
= y i+∆2 (r 2−0.5 )

z i→zi
'
=zi+∆3 ( r3−0.5 )

Here r1, r2, and r3 are random numbers between 0 and 1. All these quantities will vary from -0.5

to 0.5 and we are not biasing the displacement into any particular direction and it helps us to

reach equilibrium faster.

The second one is ∆1 , ∆2  ∆3  they essentially set the maximum displacements. So if the

system is anyway isotropic we do not we do not really bias into any particular direction. So we

set-

∆1=∆2=∆3=2×themaximumdisplacement which goes−0.5∆ ¿+0.5∆

So now you think of like what exactly will happen in the simulation if I for example set delta to

be very high so go back to the bead spring model and let us say if I stretch a bead if I pull a bead

to very large distance that we will lead to large elongation in the spring that of course will mean

large energy change and if it is a large energy change in the case of spring it is large positive

energy change, that large positive energy change if I put into our acceptance condition will give

rise to very little acceptance probability right, so large value of delta will be giving rise to little



acceptance probability because every move is resulting in a large stretching of spring or for

example separation of beads to very large distances in those moves are typically not accepted

because of the metropolis condition of acceptance that is one problem.

If on the other hand if I start with a very small delta now you will see what will happen if I just

pull up bead slightly then the spring elongation will change only slightly that would mean that

the energy change will be like very small. If energy change is very small it is more likely the

move to get accepted. So every trial move you will do will be more likely to be accepted ok that

is also not quite preferred because it will take you like a very long simulation to actually get

equilibrium state if you are very far from it because although you are accepting all the moves in

every move your only moving by little say not going towards the equilibrium value fast enough.

So in  this  case  we have  large  acceptance  probability and it  turns  out  both  of  them are  not

efficient simply because in the first case I will not accept most trials. In the second case I will

accept every trial pretty much and in both the cases I am going very slowly towards equilibrium.

So as a rule of thumb delta should be such that acceptance probability or rate goes in the range

40% to 60% just a rough number in every Monte Carlo algorithm is not follow this. But if you

are doing a Monte Carlo case and if it is taking very longer you look at how many moves are

getting accepted and may be happens rate is very small or very high that is one thing. The second

thing is always a good practice for any Monte Carlo code you vary the delta value to figure out

what is acceptance rates of moves that is and you find out delta value where it is between 40% to

60% that is when the program will be most efficient this is like I would say really a rule of

thumb.

So this is like a very important practical tip when we are doing a Monte Carlo simulation. In the

next lecture we will discuss couple more tactical tips that we must consider if I am doing a

Monte Carlo simulation.

Thank you.




