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So far in this course we have been focusing about the size of a polymer chain and we discussed 

two different measures- the end-to-end distance and gyration radius, and we did for various cases

accounting for the interactions between the segments first we looked at the ideal chain where 

there were no interactions then we did the case for a self-avoiding walk when there were 

repulsive interactions or repulsion between segments and then finally we did for the bad solvent 

case when there was attractive interaction between segments, but we have focused only on end to

end distance or gyration radius or the distribution of same quantity as a function of the number of

segments.

So now I want to talk about something different that we care about in a polymer chain and that is

the shape of a polymer Chain and structure of the polymer chain. In general the size tells you

about how large or long something is let’s say sphere can be small or larger even larger this is

what is captured by the size, the shape tells you what does it look like. So objects that are having

the same size, may have different shapes for example as a circle, a triangle and a square and may

have similar characteristic dimensions but they still have different shapes in the group and then

finally comes the point of structure which is tells you how ordered or disorders the system. 

Let us first talk about shape and why it hasn’t come into discussion so far and how can we

include that, so far we have not differentiated between the different directions they are assumed

to be identical. For example if I am computing the Rg
2. Of course I compute the 3 components

Rgx
2,  Rgy

2 and  Rgz
2 we have done that  at  least  for  the lattice  case  just  to  demonstrate  that  I

decompose walk in three dimensions in to three one dimensional random walks and I can get the

Rgx, Rgy and Rgz for each of them but if I take an ensemble average of all of them squared of them



they have to be equal and in fact should be equal to the Rg
2/3 because we know that Rg

2 is Rgx
2 +

Rgy
2 + Rgz

2.

This  particular  assumption  assumes  the  chain  to  be  somewhat  isotropic  that  is  there  is  no

difference  in  the  different  dimensions  or  does  not  matter  how I  look at  the  chain  in  every

direction it will look out to be identical. If I do it in ensemble levels of course in a particular

confirmation Rgx can be higher  than Rgy,  Rgy can be higher  than Rgz,  but  if  I  take ensemble

average for many conformation then the squared average in ensemble sense will be the same in

all the three directions. That need not be the case always, for example if we have a rod that can

be an approximation for example a stiff chain that in that case is clearly more elongated in one

direction compared to others and this must be taken care of when we are doing the analysis.

However if you look at from this from this fixed reference frame let’s say if I fix my reference

frame and I look at the polymer chain that is stiff or like a rod, there of course the chain can be

taking different orientations and again if I think in terms of the average values they have to be

the same because it is equally likely that the chain is elongated along the X direction and the

chain is the longest along the Y direction and along Z direction in fact at any angle in the three

dimensional plane the probability to have a chain axis is identical.. So if I look at from a fixed

co-ordinate frame we cannot capture the effect of elongation, so the way of doing this, way of

capturing the effect of elongation is we fix our frame of reference to the polymer chain itself.

That is to say let’s say if there is a polymer chain I will fix my reference frame can set the centre

of mass as my origin and then I can set my frame along the chain axis Let’s call this 1 2 and 3.

And what I also do this to ensure that my Rg along 1 axis 1 is higher than equal to Rg along 2

higher than equal to Rg along 3. If I am doing this in this particular way 1, 2, 3 are referred as the

principal axis and then the principal axis and then principal axis are also name as major and

minor axis and then this co-ordinate frame will move as the chain takes different orientation. So

1 is always along the most elongated dimension. So in that sense if I take ensemble average is

the ensemble average of Rg1
2 must be higher than equal to Rg2

2 must be higher than equal to

ensemble average of Rg3
2. 



So this is one point that we must fix our frame of reference to the polymer chain, how about

there can be other cases where there can be elongation also along the fixed reference frame. For

example if you imagine a confined polymer chain. So let us say you have a cylinder through

which polymer chain is passing and now since the way we have assume the diameter is either

comparable to or lesser than the radius of gyration or it can even be the same order in the effects

will start to appear. So if the chain dimensions become comparable to the diameter. In that case

the chain has to elongate in other direction because the chain cannot cross the cylinder chain of

the cylinder it has to it has to get elongated in other direction because of the confinement.

So in this case when I fix my axis, I will see that along the X the chain will be more elongated

and along the Y and Z they have to be less elongated. For a confined polymer chain we can work

with fixed reference frame and for stiff chain the reference frame should be fixed to the polymer.

Actually also for the confined polymer chain we can fix the reference frame to the polymer that

will not make an error but it will not capture the effect of confinement in true sense. 

Now let us see how these Rg value along the principal axis relates to the definitions of Rg that we

have discussed earlier and it turns out that we can define a general tensor called the gyration

tensor which basically captures the anisotropy or the fact that the change can be elongated in one

dimension more  than other  dimension.  So one can define a  gyration tensor  and this  can  be

defined both for the frame of reference fixed to the polymer chain or for the fixed reference

frame. So we can define a gyration tensor as

Š=Sαβ=
1
M

∑
i=1

M

(riα−rcmα ) (riβ−rcmβ )

Here ,α ,β=1,2,3∨X ,Y ,Z

This is in Einstein notation. 

Now irrespective of what reference frame I started with if I look at this particular matrix and I

compute the Eigen values it always the Rg along the principal axis of the deformation.

Rg1
2 ≥Rg2

2 ≥ Rg3
2



The Eigen values will come by diagonalization of S that is a standard stuff that we do in any

Eigen value problem. So essentially the way we do it is we look at determinant of-

det ( Š−λ Ǐ )=0

If I look at Eigen vectors they will give me the principal axis deformation. So this becomes let us

say if I start from xyz frame as reference-

S xx−λ Sxy Sxz

S yx S yy− λ S yz

Szx Szy Szz−λ

So we have to solve this particular relation that happens to be a cubic equation in lambda and this

gives me the three Eigen values. So now if I want to represent my anisotropy or Asphericity

because Eigen values are identical that is what we assume for random walk. We are assuming

that this is the shape is akin to the sphere ok, so if we represent my anisotropy or Asphericity in

terms of departure from the sphere or isotropic behaviour we can look at the ratio of these Eigen

values-

⟨Rg1
2 ⟩

⟨Rg2
2 ⟩

,
⟨Rg2

2 ⟩
⟨Rg3

2 ⟩
,
⟨Rg3

2 ⟩
⟨Rg1

2 ⟩

It measures the anisotropy or asphericity however there are better measures and I will come to

that what we can also see is I can look at different shapes and see like how exactly there R g1, Rg2,

Rg3 varies and see like how then we can look at these Rg  values and tell about what the shape

looks like.

For example for the case of a sphere we have a constant radius we have,

⟨Rg1
2 ⟩=⟨Rg2

2 ⟩=⟨Rg3
2 ⟩

If it is however ellipsoid now there are actually 3 possibilities,



⟨Rg1
2 ⟩≈ ⟨Rg2

2 ⟩> ⟨Rg3
2 ⟩ (calledoblate ellipsoid )

⟨Rg1
2 ⟩> ⟨Rg2

2 ⟩ ≈ ⟨Rg3
2 ⟩ (called prolate ellipsoid)

⟨Rg1
2 ⟩> ⟨Rg2

2 ⟩>⟨Rg3
2 ⟩ (called general ellipsoid )

If you have a rod in that case-

⟨Rg1
2 ⟩≫1

⟨Rg2
2 ⟩=⟨Rg3

2 ⟩≈0

As in rod Rg1
2  is very high and Rg2

2 and Rg3
2 have to be very small because they refer to the

thickness of the rod that is anyway very small especially compared to the length of the rod.

So  what  this  tells  me  is  these  Eigen  values  contain  a  measure  of  the  shape  and  we  can

characterize the anisotropy using the Eigen value. However the ratio that we have defined as the

measures of anisotropy and asphericity are not the best ones out the there, for the simple reason

that these ratios take values going from 0 to infinity so it is better to have measures that vary

from say 0 to 1, where 0 and 1 refer to two extremes in that sense it will be more convenient than

compared to measures we have because this can take a very large value or very small values.

Now we will look at this particular characteristic equation we have derived that is determinant of

the gyration tensor –λI=0 and based on that apart from the Eigen values  R g1
2  Rg2

2 Rg3
2 we can

also define something known as matrix invariants, what essentially they mean is those invariants

will  be independent of the rotation or translation of axis.  If  for example I have defined this

variant for a particular reference frame I rotate my axis those quantities will not change and that

is what is known invariants and the same thing will be true if I translate my axis somewhere of

course the matrix overall will be different but those invariance will remain unchanged.

So in  turns  out  that  the  characteristic  equation  that  I  just  showed you contains  3 matrix  in

variants-

3¿of det ( Š−λ Ǐ )=0



Tr=Rg1
2

+Rg2
2

+Rg3
2

D=Rg1
2 Rg2

2 Rg3
2

M=Rg1
2 Rg2

2
+Rg2

2 Rg3
2

+Rg3
2 Rg1

2

Using these three invariance actually only two of them, I can define the measure known as a

asphericity –

⟨ A ⟩=
⟨T r

2
−3M ⟩
⟨Tr

2 ⟩

T r
2
−3M=(Rg1

2
+Rg2

2
+Rg3

2 )
2
−3 [Rg1

2 Rg2
2

+Rg2
2 Rg3

2
+Rg3

2 Rg1
2 ]

¿Rg1
4

+Rg2
4

+Rg3
4

+2 [Rg1
2 Rg2

2
+Rg2

2 Rg3
2

+Rg3
2 Rg1

2 ]−3 [Rg1
2 Rg2

2
+Rg2

2 Rg3
2

+Rg3
2 Rg1

2 ]

¿Rg1
4

+Rg2
4

+Rg3
4
−[Rg1

2 Rg2
2

+Rg2
2 Rg3

2
+Rg3

2 Rg1
2 ]

1
2

[2Rg1
4

+2Rg2
4

+2Rg3
4
−2 Rg1

2 Rg2
2

−2Rg2
2 Rg3

2
−2 Rg3

2 Rg1
2 ]

¿
1
2 [(Rg1

4
+Rg2

4
−2 Rg1

2 Rg2
2 )+(Rg2

4
+Rg3

4
−2 Rg2

2 Rg3
2 )+(Rg3

4
+Rg1

4
−2 Rg3

2 Rg1
2 ) ]

¿
1
2 [ (Rg1

2
−Rg2

2 )
2
+(Rg2

2
−Rg3

2 )
2
+(Rg3

2
−Rg1

2 )
2 ]

Now we can write as-

Tr
2
−3M=

1
2∑i> j

(Rgi
2
−Rgj

2 )
2

Here, i , j=1,2,3

T r
2
=(∑i Rgi

2

)
2

And,



⟨ A ⟩=
1
2∑i> j

⟨ (Rgi
2
−Rgj

2 )
2 ⟩

( ⟨∑i Rgi
2

⟩)
2

So we can generalize it for a d dimension so essentially I can replace 2 by (d-1) for d dimension

now we can see like how exactly it is a good measure, so let’s say what happens when we look at

a sphere in which case Rg values are identical. So numerator will always be equal to 0 because if

I square and take a difference between 0. So A=0 for a perfect sphere on the other hand if I have

a rod then Rg1 of course is equal to the length. But have Rg2 and Rg3 are pretty much comparable

to 0 and so what I do get from this is A= ½ and on two occasions Rg1
2 will appear everything else

is 0. So we have 2 Rg1
2actually squared of that to Rg1

4 and then divided by only one occasion Rg1

will appear that is squared so this is equal to 1. Keep in mind that we assume in a perfect sphere

or a perfect rod ensemble average does not have any meaning here. 

The key point here is we are going from 0 to 1 here the higher the value is the more anisotropic

or aspherical it is and the maximum possible value is 1. So in this way this particular quantity ‘A’

characterize the shape of the random walk or all kinds of walk that we have done such as the

self-avoiding walk. So we are now covered how to characterize shape of a polymer chain earlier

we have looked at the size of the polymer chain. So in the next lecture we start talking about the

structure of the polymer chain on polymeric system before we go into it will discuss about what

do we mean by the structure talk about order and disorder transitions and we take a detour to talk

about the scattering theory and then we will return to the idea of structures of polymer chain or

polymeric systems. 

So with that I stop here and then thank you.
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