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Alright, so in the last few classes we have learnt about the random walk models and how are they

used in polymer physics. In today’s lecture I want to introduce is the idea that the random walk 

descriptions we have derived have certain similarities with the diffusion equations that you may 

have learned in mass transfer or other courses.

So, just to give you some reminder of the diffusion equation. It looks something like this where 

for example in Cartesian Coordinates:
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And, we are solving for the concentration of any species, is a function of a spatial location and

time this is what is known as the Fick’s law of diffusion. 

In fact there are 2 laws 1 that relates the concentration as the derivative of the flux and another

law that basically describes the flux J.

∂c
∂ t

=−∇⃗ ⋅ J⃗

J⃗=−D ∇⃗c



Now you may be surprised that how does the random walk description where about looking at

probability of certain end to end distance does relate with this particular relation and you will try

to  build  that  in  today’s  lecture.  And  basically  the  equation  that  we  will  show  will  have

mathematical  similarities  with  these  equations  and  then  we  can  talk  about  analogy  of  the

variables you see in this equation with whatever equation will go there. 

So, let us say I am looking at a z dimensional random walk it is bit of misnomer, so when I say a 

z dimension it is not like physical dimension what z means is the number of available directions 

for every segment. So, let us say for example for the 2 dimensional walk that we have discussed 

the z=4 because we can move in left, right, up and down and so on.

So, if we are doing a z dimensional random walk and let us say I am at a particular end to end 

displacement Re or end to end distance Re after steps M, we have derived that the probability 

distribution or the probability density for this particular thing to happen goes like a Gaussian 

function for an ideal chain. But to be here in M steps we must be somewhere near it in the 

previous step to be more precise I must be at a position Re-bi where bi indicates all available 

directions for the chain movement.

So, let us say for example if I am at A, B, C and D in the figure I can come to the point O in 1 

step and then we can have this particular distribution.

A

D O B

C

So, then we can write that the probability that the end to end displacement is Re after M steps that

must be equal to-



P ( R⃗e , M )=
1
Z
∑
i=1

Z

P ( R⃗e−bi ,M−1 )

It means I must be at one of the positions nearby that is it can be in any of the z directions then if

suppose I am at A I can of course go to any other direction then coming towards O, so there is the

probability of 1/z that I can go from A to O out of all the possible available directions. So if I

extend the idea to all the possible neighbours we get this particular relation.

So, now if I look at this particular quantity here and assuming that the bond vector is much

smaller than Re and M is like much higher than 1 we can tailored expand the probability that you

see here., so let us just do that:

So, for Taylor expansion in 1 variable goes something like this, so if I want to look at a function

value in the neighbourhood of x where h is much smaller than x, this is equal to-

f ( x+h )= f ( x )+ f ' ( x )h+ f ' ' (x )h2

Now if we have more than 1 variable we can write this as-

f (x1+h1 , x2+h2……… ..xn+hn )

Now we can take a partial derivative with respect x1, x2, x3 and so on. So, we have in total n

partial derivatives of first order, so we can write this as-

¿ f (x1+x2+……….. xn )=∑
j=1

n
∂ f
∂ x j

h j

The same idea now I apply to the second order derivative. Now second order derivative if you

think about it, it is basically 2 first order derivatives. So, now I can apply a first order derivative

of any of these x and then I can apply the second derivative for with respect to any of the other x.

So, what this comes out to be is basically-
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j=1

n
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h j+∑
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∑
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n
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The probability distribution for the random walk of M-1 steps to have the end to end distance is:

x1=R⃗e , h1=−b i , x2=M ,h2=−1

P ( R⃗e−b⃗i , M−1 )=P ( R⃗e ,M )+
∂P
∂ Re

⋅ (−b⃗i )+
∂P
∂M

(−1 )+
∂2P

∂ R⃗e ∂ R⃗e

: b⃗i⋅ b⃗i

A trick here that since one of the variable is a vector the derivative of probability with respect to

Re is also a vector and since a final result is a scalar. So, I take the derivative and a dot with the

corresponding value of h, so the end result is a scalar, similarly for M and now we also will have

the second order derivatives.

So, now again basically what you have is you have 2 derivatives now with respect to Re. So,

what you have formed is like a tensor and if you dot with the bi values again there are 2 bi values

corresponding to 2h that also is a tensor. So, if you take 2 dot products what you end up having is

a scalar again, so this is what we will have-
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∂M

So, now we get something like this:
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So, now we have some vector derivatives and vector dot products before going to details I want

to discuss a particular notation that is  called Einstein notation that will  help us to write the

vectors and tensors in very compact form. We will be using that in all in the entire course, if you

about the Einstein notation this is what it is, if you do not about it I will discuss that briefly now.

So, let us keep this in mind and we will come back to this in a moment.

So, in the Einstein notation if for example we have a vector v in 3 dimensions it indeed has 3

components in Cartesian coordinates it is looks like this,

v⃗=v xe x⏞+v y e y⏞+v z ez⏞

Where as in Einstein notation we can simple write

vα

So alpha note here is what is referred as a free index if the alpha is repeated it is called a dummy

index, So, let us say if for example I want to do a.b I can do and complete vector notation as I

will decompose the a into 3 terms and I will dot with the b decomposed in 3 terms, it becomes

as:

a⃗ ⋅ b⃗=(ax ex⏞+ay+e y⏞+az ez⏞)⋅(bx ex⏞+b y+e y⏞+bz ez⏞ )
¿axbx+a yb y+azbz= ∑

α=x , y , z

aαbα

Instead of all this we can simply write in Einstein notation as aα bα

So, in this alpha is a free index that means it is not repeated and in this case alpha is a repeated

index or dummy index. Now the advantage of doing this is I will simply count the number of

free indices that I have present in the equation and that will tell me the order of the vector. If

there are no free indices, so the order is 0 that means it is a scalar. In this case there is 1 free

index and the order is 1 that means it is a vector.



If for example I am something like a, b what essentially I mean if I do not put dot or a cross

product in between is it is a tensor in the full notation again it is-

a⃗ b⃗=(ax ex⏞+ay+e y⏞+az ez⏞)(bx ex⏞+b y+e y⏞ +bz ez⏞ )

¿axbx ex⏞ ex⏞+a yb y ey⏞ e y⏞………= ∑
α ,β=x , y, z

aα bβ eα⏞ eβ⏞

But in Einstein notation it can be simply written as- aα bβ  now you can see both alpha, beta

are free indices that means the order is 2. So, now we have a tensor okay of second order, so I

will use this particular relation in the relationship we have just derived and see like what it turns

out to be-

So, let us first the scalar terms and now I should have a term that represents-

P ( R⃗e−b⃗i , M−1 )=P ( R⃗e ,M )−
∂ P
∂M

∂ P
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⋅ b⃗i=
∂ P
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∂2 P
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:
b⃗ i⋅ b⃗ i

2
=
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∂ Reα ∂R eβ
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Here we had second order derivative and then there are 2 dots which I will write as there was the

divided by 2 here again you can see this is now a tensor representing the same tensor we have

here this is again a tensor representing this particular tensor when I apply the dot product twice

we will have repetition of both alpha and beta which were present as free indices in the 2 tensors

and that is why the end result contain no free indices it only has 2 dummy indices alpha and beta

and so this particular thing is a scalar. So, let me write that here, so this becomes in Einstein

notation-



P ( R⃗e−b⃗i , M−1 )=P ( R⃗e ,M )−
∂ P
∂M

−
∂ P
∂ Reα

biα+
∂2P

∂R eα ∂R eβ
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Now if you go back to the initial relation that we have derived we had to sum over this what we

were interested in if you remember was P Re, M and as we had derived earlier I can write P, Re,

M as sum over the quantities that I have just Taylor expanded. So it becomes:

P ( R⃗e , M )=
1
z
∑
i=1

z

P ( R⃗e−b⃗ i , M−1 )=P ( R⃗ e , M )−
∂P
∂M

−
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1
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z
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1
2 z
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z
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So what we have got so far is:

P ( R⃗e , M )=P ( R⃗e ,M )−
∂ P
∂M

+
1
2 z

∂2 P
∂R eα ∂Reβ

∑
i=1

z

biα biβ

So, now if I look at this particular term you should remember from the random walk relation that

if alpha is not equal to beta in this case this must be equal to 0. Because the steps in x direction

are independent of steps in the y direction or z direction, so this particular quantity will be equal

to 0 when alpha is not equal to beta and this quantity will be equal to b i alpha square when alpha

is equal to beta, now alpha can take values of x, y and z, so this can be like b i x square or bi y

square or bi z square and for this particular walk in 3 dimensions we know that the sum of these 3

must  be  equal  to  b2.  So,  this  particular  quantity  must  also  be  equal  to  b2/3  because  the  3

dimensions directions are pretty much equal. So, the b2 in each of them the 3 directions must be

equal and then since the all sum to b2each of them must be b2/3.

So, I have a shortcut for the writing this particular thing that is:

b2

3
δ αβ

Here δ αβ=Krone cker delta , it is equal ¿1whenα=β ,∧0whenα ≠ β

After all the cancellations our final equation becomes-
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∂M

+
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6
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∂M

=
b2

6
∂2P

∂ R⃗e∂ R⃗e
=
b2

6
∂2 P

∂2R e

∂ P
∂M

=
b2

6
∂2P
∂ Re

2

Now if I look at the final answer that we have got and if I compare that to the diffusion equation

I wrote in the very beginning which I can write in 1 dimension let us say like this then I can

relate the concentration as being analogues to the probabilities. The time as being analogues to

the number of segments M and D as being analogues to b2 /6 and for the dimensional case x as

being analogues to Re. We can extend the idea actually R will be analogues to Re.

So, apart from this the solution of this equation will be same as that of a diffusion equation we

have to look at like what the boundary conditions are and what it turns out is by solving this

equation we can also recover the fact that the probability distribution is Gaussian in nature. So,

this is I would say a more rigorous way of deriving the fact that the probability distribution is

Gaussian. The way we have been done in the past we have done it as looking at a 1 dimensional

walk problem then we got binomial distribution and then we took a limit when the number of the

steps are very large and then we have got the Gaussian distribution. But we can also get it by

using this particular diffusion equation that we have got for the probability. The solution of this

will also give you the Gaussian distribution and this particular concept will be very useful as you

will discuss in this course.

 Thank you.




