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In the last class we discussed about how to get the probability density of the end to end distance

of a chain. First we did for a 1 dimensional random walk and then we generalise the idea for a 3

dimensional general random walk and finally we discussed that we can relate the probability

density with the elastic energy of the polymer chain. So, I want to continue on that discussion

and talk about some other models of polymer chains and then finally we will look at briefly how

we can do the same things that we have derived by equations by some kind simulations.

So, just to recall what we said that the elastic energy of the polymer chain is given as

Eelastic=
3
2
k bT
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This has an entropic origin.

Now this particular result has a very special significance, so if you think of like a metal and you

will heat it, normally see the metal expands on heating. On the other hand if you take a piece of

rubber and you heat it what we do see is rubber shrinks on heating. This can be explained by the

very idea that the elasticity in  the case of a rubber is  a cross linked polymer which has an

entropic origin. So, when we heat it as we know as raise temperature the entropy of the system

increases and it wants to go to a higher entropy state. And the higher entropy corresponds to the



case when we have more confirmations, so raising temperature we want to go to higher entropy

and that means it wants to go to more number of confirmations.

The more number of confirmations will correspond to the case when the value of Re is small. So

you think of an extreme case think of like a chain is completely stretched then in that case there

is only one confirmation of a chain when the end to end distance is same as the contour length.

But if I think of say Re=Lc/2 then that can be achieved in many confirmations. So, if I start

thinking of lower values of Re we can think of more chain confirmations that means we are

going to higher entropy this we have also from the probability density curve that we derived

actually for Re=0 you have the highest number of confirmation.  Because these are the ones

which have most probable the probability actually decreases as I go to higher values of Re either

way in the positive side or negative side. Thus this is one of the most important result that comes

from the entropic origin of elasticity.

The other thing that we said is I can associate the polymer chain model with some kind of spring

model with a spring constant that is given by:

k=
3k BT

M b2

Where Kb = Boltzmann Constant & T= Temperature in Kelvin.

So, there are couple of problems with this model but this works beautifully in many cases but

there are some problems. One of the main problems is in this particular case we do not really

limit the maximum stretching of the chain, the chain can really stretched indefinitely okay and if

you think about it there has to be a maximum limit which is given by Re=Lc when the end to end

distance is equal to contour length that is not presented in the model we discussed.

In our case what we do have is if I look at the elastic energy it does increase Re as Re increase but

nowhere do we say that there has to be a physical limit in how for the Re can go. So, it turns out

that this particular approximations it is also known as the Gaussian chain approximation of the



ideal chain approximation only works for a small deformations of chain, if the R e is really very

high then in that case we have to have improved models that somehow capture the fact that there

is a maximum value of Re that is given by the contour length. So, those models for smaller values

of Re will be have something like a Gaussian chain but then it must become very steep other near

the point when Re approaches Lc on the other side. It must become very steep at this point. That

means for that Re higher than Lc E elastic should really go to infinity in improved models and in

this case E elastic does not tend to infinity. So, one of models is known as the inverse Langevin

model and you can read about it we will do not discuss in the class.

There is one thing we have to keep in mind that the approximation we have derived works only

for a small extensions. If the chain extension is say more than say 50% of the contour length in

that case you should be thinking of some other improved model this is by the way I would say an

standard  model  in  many  of  the  cases  of  a  in  physics  as  well  this  is  also  called  harmonic

approximations that only works for a small deformations around the mean value.

the other point here is we can also associate a force that we require to hold back a chain at a

particular value of Re just like if I want to stretch spring I have to apply certain force to get it to

certain length. In the same way if I want to maintain a certain value of Re I do have to apply

certain force to it. Okay, and the force is given by the derivative of the energy. Because we know

if I have to look at the energy, energy is given by the force multiplied by the displacement the

integral of that. In the same way the force to help the polymer at a particular value of Re will be

given by the derivative of the elastic energy that we have derived. And in general we are looking

at the vector Re. so:
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And that force of course in the direction that force has a same direction as the end to end distance

vector Re in the same direction we have our force acting to hold the chain in it is position. So,

now this is like where we have come is starting from the random walk models. And what we

have seen here is we are replacing the polymer chain with 1 spring of a certain stiffness constant.

So, now we can extend this idea for bit further by noting that if I cut this polymer chain into

pieces we still have polymer chains. So, we can think of those cuts also as effectively a Gaussian

chain.

So, I mean to say is if I have a polymer chain like this and if I say cut the chain then these

individual  cuts  also  represent  a  polymer  chain  right  because  since  the  M is  very large  any

particular if I do that M/2 what M/3 that is also very large. So, we can start thinking of not really

a single spring but many of these springs that my polymer chain is composed off. 

And the advantage of doing this is unlike the first case where I represent the polymer chain by

simply 1 spring we now have some sort of internal flexibility inside the polymer chain. Now,I

have is actually a collection of springs each of them will have in a spring constant k but each of

them will have different extensions the model we thus form is known as the bead-spring model.

It became especially useful. If I am trying to simulate the behaviour of a polymer chain that is

one use of it, the other use of it is when I try to look at the dynamics of a polymer chain. If I used

the earlier model there is no internal flexibility being considered it does capture the mean square

end to end distance correctly. But it does not tell me like what is the internal structure of the

polymer chain and if I go for this detailed model I can also account for the internal flexibility.

But the idea simply extends from the model we discussed, so we have not completely derived

this model, we simply state the relationships for this particular model. So, I can say that these

beads have positions R0, R1, R2 and so on.



So for any spring in the system, let us say look at the nth spring that is between Rn-1 and Rn this

spring will correspond to certain energy Un as like this. So, now we can write as:

U n=
3
2

k BT

b2 ( r⃗n−r⃗n−1 )
2

So, if I look at the probability distribution of this particular bead spring model. So, now we do

not look at just end to end distance the entire chain I can look at the end to end distance of the

individual springs or in general I can look at the positions of all the beads which I can write in

shortcut notation as:

P ( {r⃗n })

 It  means is  basically all  the positions  R0,  R1 to  Rm and  this  will  then be a  product  of  the

individual probability densities for each of the spring. So, for each of this spring now is Gaussian

spring, for each spring we can associate a probability density and so at any given movement the

probability density  for  the  entire  chain  will  be a  product  of  the  probability densities  of  the

individual segments.

P ( {r⃗n })∝∏
n=1

M

exp (−3
2b2 ( r⃗n−r⃗ n−1))

This model becomes particularly useful in simulations as we will discuss later. So, now I want to

briefly touch upon how we can we simulate these polymer models not specifically the bead

spring model that we come to later but the other models that we have discussed earlier and see

like there is an alternate way to get the results that we have derived and the alternate way also

promises to be more versatile in the sense that it can make those models more complicated then

what we can analytically derive.



So,  let’s say we consider  the  simulation  of  freely jointed  chain,  so  now earlier  we did  the

analytical derivations to get the mean square end to end distance Re
2. So, now the idea would be

that the ensemble average that I am getting here we will now get by simulations. So, essentially

what we have to do we have to simulate many chain confirmations compute their Re
2 and take

the average of all of that, provided that we are generating a very large number of confirmations.

We can hope that the simulations will give me the same results of course for a smaller number of

confirmations  this  may not  be  accurate  because  the  idea  of  the  thermodynamics  is  that  the

ensemble size must be very large. So, but we can do that in typical simulations, so the model we

are after is this freely jointed chain and we can generate this in the following way, so we can start

from say origin.

So, let us say in the first step we start from origin 0, 0, 0 which becomes my first point that is

right here or you can call it R0 and the subsequent point I will generate at a distance b from this

R0 generate next point. And there is particular way of doing it, so let us say if I have started from

this point this is my Ri then Ri+1 has to be at a distance b but then it can be in any direction in the

3 dimensions. So, the way to think about it is we will draw sphere of radius b around R i and then

I will choose any point on sphere surface as R i+1 where the sphere has a radius b. So, you can use

the idea of spherical coordinates and by that what it amounts to is we can choose randomly the

spherical angles θ and  where θ has to be between 0 to 2 and  has to be between 0 and .ϕ ℼ ϕ ℼ

And the position we can write as:

x i+1=xi+bcosθ cosϕ

y i+1= yi+b cosθ sinϕ

z i+1=z i+b sin θ

Here we are generating points randomly on the sphere surface that it at radius b with respect to

Ri, I can get the new coordinates and then I can repeat until required number of points which for

M segment case would be M+1 are generated.



Then we have to repeat for large number of confirmations and for example evaluate Re
2 and then

take ensemble average and then we have the result. So, this is the way of doing it there is only a

small problem here that if I use this particular method of generating my random point on the

sphere surface, it turns out to be inefficient, in the sense that it will not generate points uniformly

over the entire surface you will tend to have more points near the poles and lesser points near the

equator.

An alternative way is to do is to generate 2 random variables u between 0 and 1 and v between 0

and 1 and then we get:

u∈ [0,1 ] , v∈ [0,1 ]

θ=2πu ,ϕ=acos (2 v−1 )

As an assignment you can try doing both these methods and see why I am saying that you will

not get a uniform distribution in this case and why this will ensure uniform distribution. 

So, once we have got this idea for a freely jointed chain now you can of course get the ensemble

values of Re
2. We can look at the probability density distribution of confirmations, we simply

look at what is the probability of having confirmations within a range of R e values and so on and

we can reconstruct the probability density curve, the mean square ensemble average and all the

quantities we have simply derived and actually we can also see how they structure of polymer

chain is changing for different confirmations.

Now we can apply the same idea for other models particularly the one dimensional random walk

is extremely simple. So, I want to do a walk of M steps like that where I can move left or right

with equal probability. The way to do that again-

 Start from origin. 
 Generate next confirmation to left or right with equal probability that is ½ and the way of

doing it is you generate a random number say between 0 and 1.
 let us say I call this number r, then r>0.5 we move to the right that

x i+1=x i+b

 if r < 0.5 then we move to the left



x i+1=xi−b

 Repeat for M steps and
 Repeat for large number of confirmations.

If I am doing for example a random walk in 2 dimension or higher dimensions all that changes is

my algorithm here. So, if I am doing for example a 2D walk. So, now we have 4 outcomes left, 

right, up and down, so now we can again generate R between 0 and 1 provided that it is 

uniformly distributed from 0 to 1 and now we can say:

 r∈ [0,1 ]

 If r<0.25 then we move left
x i+1=xi−b

y i+1= yi

 If r is between 0.25 to 0.5 we do move right, then
x i+1=x i+b

y i+1= yi

 If r is between 0.5 and 0.75 then it will move up. So we have:
x i+1=x i

y i+1= yi+b

 If r is between 0.75 and 1 then it will move down. So,
x i+1=x i

y i+1= yi−b

There are small detail here that of course r can take a value of 0.5 in this case that we not really 

make much difference here but it has to be r greater than equal to here. Similarly we can put 

greater than equal to sin at this intervals depending on also your generator for the unknown 

number. But that will not really make much difference because r is a floating variable that is 

changing in a continuous way from 0 to 1.



So, same idea we can also apply if I for the 2D walk if I am not allowing for the folding back. 

The only difference would be is, so I do not want to allow for the possibility of folding back. So, 

this is my positions Ri, Ri+1, Ri+2, so I have to make sure that Ri+2 is not equal to Ri. So, we add 

constraint in the algorithm that we had earlier you can generate in the same way but now with a 

constraint that we will not allow Xi+2=Xi and, so this is like the and operator. So, only when both 

of these are true we should disallowed both are not be true. Of course Xi+2 can be equal to Xi 

but yi+2 can be different and that will not amount to a folding back.

So, this is a way we can simulate the variety of models that we have discussed keep in mind that 

in all these cases we are simply enumerating confirmations there is no energy coming into this 

picture. We simply enumerate many possible confirmations and we take an ensemble average, 

we do not say that these confirmations have higher energy and these have a lower energy and so 

it turns out that we have to generate many confirmation irrespective of the actual scenario where 

some confirmations can be much less probable and they can be avoided.

So, more on that later but right now what we have done is actually some sort of a Monte Carlo 

we can think about it. But basically we are simply enumerating all possible confirmations and 

then try to see like what confirmations are more probable my simply this enumeration process. 

So, you can write this kind of codes in any language of your choice and try to visualise how the 

polymer chains look like that should give you the feeling of what we have covered in the class so

far. That why are we saying that there are more confirmations for lower values of Re this we 

should see by doing this kind of simulations. We can also establish by scaling large Re
2 

proportional to M and you should see that this could hold for large values of M this also we can 

establish from these kind of small simulations and finally once we are in the habit of doing this 

the same scheme will go to into a more detailed Monte Carlo code except that we will also have 

an energy calculation in between that.

 So I want to stop that this, thank you.




