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Welcome to the 2
nd

 lecture of week 3 which is on fluidization, now if you remember lecture 1 of 

week 3 there we have defined fluidization we have discussed minimum fluidization condition 

how it achieves that we have discussed now in this lecture we will see how to compute minimum 

fluidization velocity for fluidization process analytically as well as experimentally. 
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So you see if flow conditions within the bed are streamline the relation between fluid velocity 

you see pressure drop ΔP and voidage is given for a fixed bed of spherical particle of diameter d 

by Carman- kozeny equation so you see here we are considering a streamline motion a 



streamline movement of fluid it means we are considering laminar flow and for that purpose 

Carman-Kozeny equation is defined for fixed bed, so first we will see this equation of our fixed 

bed and then we will transpose we will translate to the fluidized bed. 

 

So for fixed the Carman-Kozeny equation is this uc = 0.00055 e
3
 1 – e whole square pressure 

drop that is ΔP d
2
 / µl, so pressure drop across the bed µ is the fluid viscosity l is the height of 

bed d is the particle diameter and it is specifically proposed for spherical particle, so this is for 

fixed bed now for fluidize bed the buoyant weight of the particle is counter balanced by the 

frictional drag. 

 

Now what happens in fluidize bed if you consider if you remember the second if you remember 

the first lecture of week 3 the last slide of that lecture contains the derivation of pressure drop of 

fluidized bed. So that pressure drop relation we have obtained like this that is pressure drop equal 

to l1 – e ρs - ρ into g if you remember this expression we have derived this donned forced 

balance. 

 

Now when we put this pressure drop over here we can have the velocity for fluidized condition, 

so in that case uc should be equal to 0.0055 e
3
 1 – e d

2
 ρs – ρg / µ. So while putting pressure drop 

for fluidized condition we can obtain this velocity uc for fluidized bed, now as we have to define 

the fluidizing as we have to define the minimum fluidizing velocity some other factor we have to 

consider. 
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Because as the upward velocity of flow of fluid through a packed bed of uniform spheres is 

increased the point of incipient fluidization is reached incipient fluidization you understand that 

is minimum fluidization and that we have already discussed in the last lecture, so the 

corresponding value of minimum fluidizing velocity that is umf is then obtained using emt if you 

remember the last slide where we have define the void age of the bed in terms of e now velocity 

corresponding to that is uc once we have to define the velocity for minimum fluidization 

condition that umf. 

 

So void age which is obtained at minimum fluidization condition that also we have to consider 

and that will be represented by emf, so the same equation but with different terminology umf we 

are considering and emf we are considering, value of emf will be a function of shape size 

distribution and surface properties on the particle substituting a value of emf as 0.4 we can get 

minimum fluidization velocity is 0.00059 and this expression is put as it is from the previous 

equation. 

 

So you see here though we have define we have to calculate void age but if void age is 

equivalent to 0.4 the minimum fluidization velocity we can calculate directly from this 



expression, so all this expression are valid tell the laminar flow occur or tell the validity of 

Carman-Kozeny equation will be found so when the flow regime at the point of minimum 

fluidization or incipient fluidization. 
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Is outside the range over which Carman-Kozeny equation is applicable like if flow is not a 

streamline it is necessary to use one of the more jungle equations for pressure gradient in the bed 

such as Ergun equation, so when we see the Erguns equation it is denoting the pressure drop 

across the bed and the whole equation is like this where d is diameter of the sphere with the same 

volume and same area ratio as the particle, so diameter should be equal to the diameter of a 

sphere having same volume. 

 

And same surface area as the particle, substituting e=emf at minimum fluidization condition and 

velocity umf we will put over here, so and pressure drop condition pressure drop expression we 

will consider for pressure drop we have define for fluidizing condition all these expression we 

will put over here so this is the expression for Erguns equation when minimum fluidization 

condition will be achieved. 
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Now we will multiplied both side of Ergun’s equation at minimum fluidization condition by this 

factor that is ρd
3
/ µ2 1 – emf then we multiplied this we are getting a equation like this, now in 

this equation here if you consider this particular expression this is resembling to or this is equal 

to Galileo number, Galileo number is defined through these parameters and similarly if we are 

considering this factor this expression what is this, that is nothing but the Reynolds number at 

minimum fluidization condition. 

 

So because here we have minimum fluidization velocity so accordingly Reynolds number would 

be at minimum fluidization condition, so what we are doing here is we are converting whole 

Erguns equation at minimum fluidization condition in dimension less form, so final equation 

should be Ga that is Galileo number equal to 150 1 – emf / emf
2
 that is already dimension less and 

here we have Reynolds number and this parameter this factor we have kept as it is and further 

this factor will be equal to Reynolds number square at minimum fluidization condition so you 

see it is in terms of dimension less groups. 
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For typical value of emf is equal to 0.4 Galileo number should be like this 1406Re at minimum 

fluidization condition plus 27.3 Re
2
 at minimum fluidization condition, so this final equation we 

can obtained at emf = 0.4 once we solve this we can get Reynolds number 24.7 and whole 

expression is showing like this similarly for void age 0.45 Reynolds number we can find by this 

we can obtained by this equation. 

 

Now once we have the Reynolds at minimum fluidization condition that we have already seen 

how we have how we can get that for a stream line flow and for non stream line flow also, once 

we have this Reynolds number value we can calculate the minimum fluidisation velocity through 

this, so by this way we can calculate minimum fluidisation velocity analytically. But this is 

specifically used for spherical particles. 
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Now how we can calculate minimum fluidisation velocity experimentally, the minimum 

fluidsing velocity umf may be determined experimentally by measuring the pressure drop across a 

bed for both increasing and decreasing velocity and plotting the results. So what happens we can 

carry out fluidisation experiment and we have to note down the data of pressure drop as well as 

velocity, and that pressure drop and velocity data we can draw in the graph as shown over here. 

 

So first of all we draw this graph for increasing velocity and then for decreasing velocity we can 

observe this nature of the graph, so the two best straight lines are then drawn through a 

experimental point and the velocity at which their point of intersection is taken as the minimum 

fluidisation, minimum fluidising velocity, so how we can calculate minimum, how we can 

calculate minimum fluidising velocity is this is one straight like this is another straight line if we 

join these two line this should be the intercept so that intercept is resembling to minimum 

fluidising velocity. 

 

So in this way we can calculate minimum fluidisation velocity experimentally, so till now we 

have seen the minimum fluidisation velocity expressions for spherical particle only, but in 



general particles are, particle carry different shapes so how we can consider different shapes of 

the particle to compute minimum fluidisation velocity or minimum fluidising velocity. 
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For this WEN and YU examined the relationship between voidage at minimum fluidising 

velocity that is emf and particle shape ϕs, ϕs particle shape when we are considering, we are 

speaking about sphericity of the particle which is defined as ϕs=d/dp so this expression is given 

by WEN and YU. From this condition we can calculate whatever d we have used earlier all that 

d will replaced with ϕs into dp, where d is 6Vp/Ap and dp is 6Vp/π. 

 

So here you see this dp is basically diameter of the particle having equal volume as that of the 

particle which is nothing but Vp. In practice the particle size d can be determined only by 

measuring both volumes like Vp and areas Ap of the particles, so once we know Vp as well as 

area Ap then only we can define diameter d as we can see from this equation, since this operation 

involves somewhat tedious experimental technique because we have to observe two parameter 

for the characterizing, we have to observe two parameter to characterize the particle. 

 



It is more convenient to measure particle volume only and then work in terms of dp and the shape 

factor. So you see dp is only based on particle volume so once we calculate the particle volume 

we can carry out, we can define the particle diameter it is not necessary to define, necessary to 

calculate or to obtain volume as well as area of the particle. 
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The minimum fluidising velocity is a function of both emf and ϕs and Yu showed that these two 

quantities are in practice inter-related so voidage as well as shape of the particle will be inter-

related by how we can say that because voidage can be obtained based on shape of the particle 

itself like if particles are sphere the uniform voidage we are, we can obtain throughout but if 

particle shape are quite irregular we can have small voidage somewhere and somewhere we have 

large voidage, so emf will be directly associated with the shape of the particle. 

 

So these authors like we, I speaking about WEN and YU have published experimental data of emf 

and ϕs fro wide range of well characterized particles and it has been shown that the relation 

between these two quantities is essentially independent of particle size over wide range. So you 

see the relation between emf and ϕs they have proposed two different relations and these relations 

are independent of the particle size. 
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The experimental information carried out by the authors are shown over here they have plotted 

emf verses ϕs and they have shown different points experimental point over here and when they 

draw the line of these equations for emf and ϕs the solid line shows first expression that is 1-

emf/ϕs
2
emf

3
=11 and dotted lines shows second expression between shape factor as well as emf, so 

you once you see the plot of these two line you can see that these line satisfy the experimental 

data nicely.  
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Now what happens we have to obtained minimum fluidising velocity for irregular particle, so it 

was the Ergun’s equations if you remember where pressure drop we have replaced e we have 

replaced with emf and u we have replaced with μmf, here d should be replaced with ϕsxdp to 

consider shape of the particle, and along with replacing d with ϕs and dp along with this we have 

to multiply both side with this factor, so here we have replaced d with ϕs
2
.dp

2
. 

 

And similarly d should be replaced as ϕsxdp so here you see d
2
 is replaced with ϕs

2
 dp

2
 and in this 

expression d is replaced with ϕsdp multiplying both side by this we can obtain this expression and 

then we can replace (1-emf/e
3

mf)1/ϕs
2
=11 as just we have seen these relationship was proposed by 

WEN and YU. 

 

And similarly, this expression we can equate to 14 so after putting these value and here you 

understand this is Galileo number this is Reynolds number at minimum fluidising condition so 

putting all these factors we can obtain Galileo number for the particle because this is not of 

regular shape, we can have 150x11 this can be replaced by 11 and here this is replaced by 

Reynolds number for particle at minimum fluidising condition. 

 



And similarly 1.75x14, 14 we can obtain from here and this is Reynolds number of particle 

square. 
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So this is the relation of Galileo number and Reynolds number of particle and once we solve this 

to get the Reynolds number, Reynolds number for different particle shape we can obtained by 

this equation that is 33.65 and in bracket we have this expression, so once we have obtained 

Reynolds number of particle of different shape we can calculate minimum fluidsing velocity for 

different shape particles. 

 

Now further we will relate minimum fluidisation velocity as well as terminal settling velocity of 

the particle, you understand what is terminal settling velocity when particle is moving without 

having any net force acting on this so the minimum fluidization, so at terminal velocity particle 

will move with the fluid. 
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So minimum fluidization velocity umf   may be expressed in terms of free falling velocity, so here 

first we should understand what is the difference between minimum fluidization velocity and 

terminal velocity? To a terminal falling velocity, minimum fluidization velocity is obtained when 

fluid will start moving with the particle, and terminal falling velocity is that velocity where the 

particle will be carried by the fluid. So you understand minimum fluidization velocity particle 

will start moving it will not be fluidized completely but at terminal falling velocity the particle 

will be carried out by the liquid, so it will be beyond fluidization condition. 

 

So minimum fluidization velocity umf   will be exposed in terms of free falling velocity, the 

Erguns equation relates the Galileo number and the Reynolds number in terms of void age for 

minimum fluidization condition is this. that just you have seen specifically for spherical particle 

and similarly when we have to co relate the particles Reynolds number act terminal falling 

velocity with Galileo number. We can obtain this particular relation that is Reynolds number, at 

terminal falling velocity = 2.33Ga 
0.018

 – 1.53 Ga -
0.016 13.3

, so the derivation of this you can find 

in volume 2. 
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So here we have the graph, this is drawn between the ratio Reynolds number at a terminal falling 

velocity and Reynolds number at minimum fluidization velocity, that we have plotted, o you see 

this graph it shows the ratio of the Reynolds number at a terminal settling velocity or terminal 

falling velocity and Reynolds number minimum fluidization velocity against the Galileo number, 

where emf is considered a parameter. So you see how does this we have obtained a given 

Reynolds number we can calculate Reynolds number at velocity at this expression and Reynolds 

number for fluidization where emf have to put.  

 

So for seeing Galileo number at minimum fluidization condition and terminal falling condition 

we obtain the ratio of this we can calculate and we can allot this ratio over this graph, so you see 

different authors have already carried out the experiment then this curves satisfied the 

experimental data. Therefore ratio of Reynolds number at terminal falling velocity minimum 

fluidization will be related with the Galileo number using these curves. So here you can see 

when the Galileo number is very small at that point the ratio of Reynolds number falling velocity 

minimum fluidization velocity is higher in comparison to Galileo number. 
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So here we have shown relation to different5 Galileo number and the Reynolds number at 

terminal falling velocity, for different zone of the Galileo number at emf = 0.4 that is we can 

obtain. Now for low value of Reynolds number that is <0.003 and Ga< 3.6, so once we have this 

as Reynolds number very small this term can neglect. We can calculate the minimum fluidization 

condition, using these two terms, so Reynolds number minimum fluidization condition obtained 

as 0.000712 Ga and similarly Reynolds number at terminal falling condition, we can obtained by 

this because here the Galileo number is , 3.6, so this condition we can obtain, this expression we 

can obtain.   

 

The ratio of these two will give value 78 which is the ratio of terminal settling velocity and 

minimum fluidization velocity because the rest of the parameter becomes equal. Again for higher 

Reynolds number that is Reynolds number at minimum fluidizing condition >200 and then 

Galileo number >10 
5,

 so these are the expression for Reynolds number at two different condition 

and the value is 9.1, so you see at < Galileo number, higher ratio is obtained and higher Galileo 

number lesser ratio is obtained. 
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Therefore if you see this value it shows that u0 / Umf is much larger for low values of Galleo 

number, generally obtained with small particles, than the high values, so for the smaller particle 

the ratio of u0 / Umf is larger than the large particle. For particulate fluidization with liquid the 

theoretical range of fluidizing velocities is from a minimum of Umf   to a maximum of u0. So you 

see for the particulate fluidization the velocity of fluid should be between u0 / Umf. That is lower 

and upper range of fluid velocity in particulate fluidization. 
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So here we have to summarize this lecture and this summary consist of summary of lecture 1 and 

lecture 2 of week 3 and it goes as, fluidization is defined along with it types, fluidization 

characteristics are discussed. Minimum fluidization velocity is defined and effect of shape on it 

is discussed, and finally relation between minimum fluidization velocity and terminal setting 

velocity is discussed.   
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Here we have the references basic book which I have referred you can go through these books 

for further detailing and that is all for now thank you.      
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