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Welcome to the second part of lecture 1 which is on particle dynamics. So if you remember the
first part of this we have derived the expression of terminal settling velocity and we also have
seen different equations of terminal settling velocity falling in different region.

(Refer Slide Time: 00:50)

; _lgx[_gﬂ_ﬁﬂ]xgqt[” Terminal settling velocity

fy

And if you see this equation, this is the generalized equation of terminal settling velocity. And
here V. is a function of fp. Now what happens when we do not know the region in which particle

is falling, then I cannot take the value of fp, For example, if I do not know whether the particle is



falling is laminar region or any other region, so how I can take value of fp. If it is falling in

laminar region then only | can take the value of fp as 24/re.
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Now to know the value of fp we should know the value of Reynolds number. And to calculate
Reynolds number again we need the value of terminal settling velocity that is V. Therefore, this
fo as well as Reynolds number calculation is trial and error based. It is not directly based until or

unless | know the region in which particle is falling.

So to handle such situation we have another expression of another way to calculate terminal

settling velocity and about this you can study in detail in this reference.
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The resistance force per unit projected area of the particle under terminal falling
conditions R/, is given by:
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So in this method what we have taken that, what we have considered that resistance force per
unit projected area, the resistance force per unit projected area of the particle under terminal
falling condition Ro' and it is given by this expression. So Ro' is the resistance force and the

resistance force per unit area and here we have multiplied it with projected area of particle.

So Ro' x 1/4nd? = 1/6 nd® (ps- p) g. Now what is this right hand side expression. If you remember
where we have started derivation of terminal settling velocity. So here this complete expression
is equal to fp and if you match this equation with this it is equal, because here we have dp and
that dp will be replaced at the place of 1.

So when we resolve this equation this expression the same expression we will get. And that is
equal to fp. So fp basically A x K x f and if you see the parameter Ro' X A, so what is Ro' is, Ro'
is nothing but the multiplication of K x f. So same equation you can use over here, but instead of

K x f we have to write the parameter Ro'.

And if you see this expression as well as this expression some of the parameter are denoted
differently. For example, here we have taken diameter of particle as D previously we have taken



this as dp and in this case we have taken ps and that is the density of solid and here we have taken
density of particle pp and here this is the density of medium or fluid and in this, in previous

expression we have represented this with pg.

So here you can say parameters are same, but their notation are different, but | have already

defined, so you can resemble the parameters with the previous definitions of parameters.
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The resistance force per unit projected area of the particle under terminal falling
conditions R/, is given by:
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Now here using this particular expression we can find the expression of Re' which is 2/3 d (ps-p)

g. So this is the expression of resistance force on the particle.
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The resistance force per unit projected area of the particle under terminal falling
conditions R, is given by:
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Galileo number Ga or sometimes the
Archimedes number Ar

And further we will consider this expression and both side of this equation we can divide by
puoz, here left hand side also as well as right hand side also, we have divided it by puo2 where ug
is nothing but the terminal settling velocity that is V; we have represented previously. So if you
consider this expression, further we will multiply both side of this equation by Reynolds number

square.

If you see this expression that is up?d®p? p? this is nothing but the Reynolds number square. So
Ro/uo? X Reynolds number square. It is equal to this expression into Reynolds number square. So
when we resolve this equation and in this side if we see that uy? and here up? is cancelled out and

we can further write the expression which is present to right hand side like this 2d°(ps - p) pg/3u®.

Now if you consider this particular set which we have encircled that is 2d(ps - p) pg/3u? if you
consider this expression this we have denoted with Galileo number that is Ga or sometimes we
also call it Archimedes number Ar. So if you consider the Galileo number all parameter which

are available in this number are known to us.



For example, if we have to calculate terminal settling velocity of a particle | will aware with the
diameter of particle, I will aware its density p of fluid as well as density of fluid both parameter

we will know and g value also know. So we can calculate Galileo number once | know the

parameters.
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Backhurst, ). R. and Harker J, H.,"Coulson and Richardson Chamical Engineering”, Vol,

115" £d., 2002, Butterworth.Helnemann.

And these are usually known to us. So if you consider this particle expression that is Ry'/pu? into
Reynolds number square this we can equate with 2/3 into Galileo number. So this expression is a
function of all known parameters to us. So here we have Reynolds numbers as well as this

expression as Galileo number we can find.
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Further we have this expression, so how we can calculate terminals setting velocity using this
once | know the parameter | will calculate Galileo number and 2/2 will be equal to this parameter

so the value of this hole parameter can be calculated.
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And this table if you see it is having the data of log Re as a function of log R/ pu®/ Reynolds
number square. So if you see this is the same parameter which we have used over here and log of
this is equal to 2/3 Galileo number, so | know already the Galileo number, so | know the law |
know this parameter and | can calculate log of this. So once | calculate log of this by referring

this table we can calculate the value of log Reynolds number.

For example, if log of this is coming as 2.15 so you can see here we have the value of log R’/ pu?
x Re’2. So here we have the value 2 and | have to find the log Reynolds number value correspond
to log of this expression as 2.15. So here we have to 2 value and point 1 is available over here.
So | will consider this particular value and further 2.2 that is 2 is available here and 0.2 is

available here so further | will collect this value.

Now making interpolation between these two | will calculate the value of log Reynolds number
at 2.15. So once | know the Reynolds number | can calculate terminal settling velocity of
particle. So instead of using trial and error method we can use this method direct, directly to
calculate terminal settling velocity and here Re’ that is Reynolds number ° is a Re that we have

previously defined.
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R’ / pu?is a form of drag coefficient and this value R’/ pu? it is value is equal to fp/2 so by this
method we can calculate terminal settling velocity of particle directly and this is a specifically

used for a spherical particles.
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So if we have to calculate the terminal settling velocity of spherical particle I can calculate it
directly without knowing that in which region particle is falling. So instead of using pervious
laws that is a Stoke’s law, Newton’s law we can use this method directly to calculate the terminal
settling velocity, but it is only applicable for spherical particle. If we have to calculate settling

velocity of non spherical particle we have to follow the trail and error method there is no other
way of doing that.
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Backhurst, J. R. and Harker J. H.,"Coutson and Richardson Chamical Engineering”, Vol.
I",5" Ed., 2002, Butterworth-Helnemann.

So this graph is again showing the same values here this is basically R’ / pu? Re on this Y axis
and X axis is basically Reynolds number ‘. So using this graph also we can calculate the terminal
settling velocity here another graph is also plotted but we have to use this graph for spherical
particles. Now as for us derivation of terminal settling velocity is concerned we have taken some

of the assumptions like all 6 assumptions if you remember which we have discussed in part one.
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2. The particle is non-porous and incompressible. The particle is thus
insoluble in the fluid and chemically inert with it.

3. The density and viscosity of the fluid are constant,

4. The effect of surface characteristics of solid on the dynamics of the
particle is negligible.

5. The particle is freely settling under gravity.

6. The fluid forms an infinite medium.

Now at this point we are going to relax some of the assumptions. So first is assumption we will
relax is particle is spherical. Now we calculate, now we consider the expression when particle is
non spherical in shape. So considering days we will study the effect of particle shape on terminal

settling velocity.
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There are two difficulties with experimental data available on drag coefficients and
terminal falling velocities for non-spherical particles:

1. Aninfinite number of non-spherical shapes exist,

2. Each of these shapes is associated with an infinite number of orientations which
the particle is free to take up in the fluid, and the orientation may oscillate
during the course of settling.

So there are two difficulties with experimental data available on drag coefficients and terminal
falling velocity for non spherical particle. The first is an infinite number of non spherical shapes
exist, and second each of these shapes is associated with infinite number of orientation which the
particle is free to take up in a fluid and the orientation may oscillate during the course of settling.
So for example when we consider irregular particle sometimes it will fall like this, sometime it

may fall like this, sometime it may fall like this, and some time it may fall vertically also.

So orientation is continuously changing when the particle is falling in a fluid so that is another
difficulty.
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There are two difficulties with experimental data available on drag coefficients and
terminal falling velocities for non-spherical particles:

1. Aninfinite number of non-spherical shapes exist,

2. Each of these shapes is associated with an infinite number of orientations which
the particle is free to take up in the fluid, and the orientation may oscillate
during the course of settling.

In a recent study, it was found that the most satisfactory characteristic linear
dimension to consider the shape is the sphericity, (surface area of particle / surface
area of sphere of equal volume). The limitation of this whole approach is that mean
errors are often as high as about 16 per cent, and maximum errors may be of the
order of 100 per cent. To reduce this error, separate shape factors in the Stokes’ and
Newton's law regions are considered.

So in recent study it was found that most satisfactory characteristic linear dimension to consider
the shape is sphericity. If you remember this sphericity we have discussed in the first week of
this course which is basically the surface area of particle divided by surface area of a sphere of
equal volume. And the limitation of this whole approach is that, if we calculate the terminal
settling velocity using given equation, and if we carry out experimentation for non spherical

particle.

So error used to come about 16% and maximum error may be of the order of 100%. So to reduce
this error separate shape factors in Stokes as well as Newton’s law region or considered. So you
can see the effect of shape will be considered by considering another factor in Stokes’ as well as

Newton’s law.
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There are two difficulties with experimental data available on drag coefficients and
terminal falling velocities for non-spherical particles:

1. Aninfinite number of non-spherical shapes exist,

2. Each of these shapes is associated with an infinite number of orientations which
the particle is free to take up in the fluid, and the orientation may oscillate
during the course of settling.

In a recent study, it was found that the most satisfactory characteristic linear
dimension to consider the shape is the sphericity, (surface area of particle / surface
area of sphere of equal volume). The limitation of this whole approach is that mean
errors are often as high as about 16 per cent, and maximum errors may be of the
order of 100 per cent. To reduce this error, separate shape factors in the Stokes' and
Newton's [aw regions are considered.

Now another problem in such condition is that.
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Another problem is that, while settling, a non-spherical particle will not
travel vertically in a fixed orientation. In general, the resistance force to
movement in the gravitational field will not act vertically and the particle will
tend to spiral and to rotate.

While settling non spherical particle will not travel vertically in fixed orientation. As we have
discussed that continuously orientation is keep on changing when particle is falling in a liquid. In
general the resistance force to movement in gravitational field will not act vertically and particle

will tend to spiral and to rotate.



(Refer Slide Time: 14:41)

" Effect of particle shape

Another problem is that, while settling, a non-spherical particle will not
travel vertically in a fixed orientation, In general, the resistance force to
movement in the gravitational field will not act vertically and the particle will
tend to spiral and to rotate.

If the particle is non-spherical, then volumetric diameter d, of the particle is
used in place of d, in all the equations and also sphericity, y,, of the particle
is incorporated. Then particle Reynolds number is

Re,=d, Vip/ Iy

Therefore, if particle is non spherical, then volumetric diameter of particle is consider in place of

dp what is volumetric dia, | guess you remember this it is the diameter of a spherical particle of
same volume as the particle.
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Another problem is that, while settling, a non-spherical particle will not
travel vertically in a fixed orientation, In general, the resistance force to
movement in the gravitational field will not act vertically and the particle will
tend to spiral and to rotate.

If the particle is non-spherical, then volumetric diameter d, of the particle is
used in place of d, in all the equations and also sphericity, y,, of the particle
is incorporated. Then particle Reynolds number is

Re,=d, Vip/ Iy

Therefore, to consider the non spherical shape of particle we consider dy instead of d, in all
equation.
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Another problem is that, while settling, a non-spherical particle will not
travel vertically in a fixed orientation. In general, the resistance force to
movement in the gravitational field will not act vertically and the particle will
tend to spiral and to rotate.

If the particle is non-spherical, then volumetric diameter d, of the particle is
used in place of d, in all the equations and also sphericity, y,, of the particle
is incorporated. Then particle Reynolds number is

Re,=d, Vy p/ Iy

For non-spherical particle the f, and Re, can be plotted using logarithmic
coordinates, and a separate curve is obtained for each shape of particle and
for each orientation.

And along with this we will also consider 5s that is a sphericity of the particle to incorporate
different shapes. Therefore, Reynolds number for irregular particle or non spherical particle is
defined as dy Vi pf/uf previously we have taken this as d, Now we will take diameter as d,. So for
non spherical particle the fp and Reynolds number Re, can be plotted using log graph which we
have seen previously also.

So same axis we will use for that is log, log axis to plot fp and Reynolds number for non
spherical particle and a separate curve is obtain for each shape of the particle and for each
orientation.
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For example, if you see this graph, what this graph shows, you see the bottom most line we have
discussed previously also and this is for spherical particle where y=1. So v is keep on changing
when we move upward and we have different lines to calculate fp based on Reynolds number
and all these y will depend on different shape. So you see here we have fp verses Reynolds

number plot for different value of s.
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For Stoke’s law here we have the expression of terminal settling velocity up to here we have
already seen in the previous part of this lecture. Now this expression is multiplied by another
parameter that is K; where K; is defined as 0.843 log ys/0.065. So s is basically considering the
shape of particle and here we have taken volume at will die of particle instead of D, so this is the

revised expression for Stoke’s law when the particle is irregular and it is falling in laminar zone.

Similarly we can change the parameter for Newton’s law also here you see this is 4/3 X p, - py psX
Gdv /c,M so this ¢, basically the correction factor when we are studying the effect of shape on
terminal settling velocity. So this c; is defined as 5.31 — 4.88 ys. So considering Kj in Stoke’s law
and c; in Newton’s law we can study the effect of particle shape on settling velocity. And again
here we have consider all this assumptions in this up to here we have already relax the first

assumption.
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Assumption relaxed

1. Fhepasticledssphevieslof diamaterd.—

2. The particle is non-porous and incompressible. The particle is thus
insoluble in the fluid and chemically inert with it

3. The density and viscosity of the fluid are constant.

4, The effect of surface characteristics of solid on the dynamics of the
particle is negligible.

5. The particle is freely settling under gravity.

Now we are going to relax sixth assumption that is the fluid forms and infinite medium. So
previously we have assumed that fluid is falling and infinite medium, it means it is falling in a
cylinder filled with the liquid. So that cylinder diameter is significantly large in comparison to
the diameter of particle. And therefore, it is therefore, the movement of particle will not be
affected by the wall of the cylinder present near to us. Now we are relaxing this assumption to

study the effect of wall on terminal settling velocity.
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Effect of wall

The boundaries of the vessel containing the fluid in which the particle is
settling will affect its settling velocity. If the ratio of diameter of the particle
(d;) to that of the tube (D) is significant, the motion of the particle is
retarded. Two effects arise:

So the boundaries of the vessel containing the fluid in which particle is settling will affect its
settling velocity. If the ratio of diameter of the particle dj, to that of the tube D were D is the inner
diameter of cylinder or tube is significant. If the ratio of diameter of particle d, to that of D is

significant the motion of particle is retarded. Now why it is retarded, it has two different effects.
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| Effect of wall

The boundaries of the vessel containing the fluid in which the particle is
settling will affect its settling velocity. If the ratio of diameter of the particle
(d,) to that of the tube (D) Is significant, the motion of the particle Is
retarded. Two effects arise;

1. As the particle moves downwards it displaces an equal volume of liquid
which must rise through the annular region between the particle and the
wall,

2, The velocity profile in the fluid Is affected by the presence of the tube
houndary.

First as particle moves downward it displaces an equal amount of or equal volume of liquid
which must rise through the annular region between particle and the wall. And second is the
velocity profile in the fluid is affected by the presence of tube boundary. So these are the two

affects well particle is falling in smaller diameter cylinder or tube.
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The boundaries of the vessel containing the fluid in which the particle is
settling will affect its settling velocity. If the ratio of diameter of the particle
(d,) to that of the tube (D) is significant, the motion of the particle is
retarded. Two effects arlse:

1. As the particle moves downwards it displaces an equal volume of liquid
which must rise through the annular region between the particle and the
wall,

2. The velocity profile in the fluid is affected by the presence of the tube
boundary.

The effect Is difficult to quantify accurately because the particle will not
normally follow a precisely uniform vertical path through the fluld.

So the effect is difficult to quantify accurately because the particle will not normally follow a

precisely uniform vertical path through the fluid.
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* Effect of wall

If the fluid is bounded within a confined space (a cylinder), the
upward velocity of the displaced liquid will be higher which
increases the resistance to the fall of the particle and thereby
decreases its settling velocity.

The projected area of the particle reduces the effective cross-
sectional area of the container, reducing the effective flow area
of the displaced liquid and as a result its velocity increases,

_

Therefore, if the fluid is bounded with the confined space that is a cylinder. The upward velocity
of displaced liquid will be higher which increases the resistance to fall the particle and therefore,
decrease it settling velocity. Now why it happens, why the, when volume goes, when the particle
displaces the volume of liquid of its own volume, then it exert the resistance and why the settling
velocity is decreased, because the projected area of particle reduces the effective cross sectional

area of the container.

For example, initially 1 am having the container of this diameter and if particle is moving like
this. So when particle is moving like this it displaces the liquid and if you see this is the diameter
of cylinder and this is the diameter of particle, so effective area of the cylinder through which
liquid will move will reduce. So it will reduce the effective flow area of displaced liquid and as a

result velocity increases, so once velocity will increase.
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If the fluid is bounded within a confined space (a cylinder), the
upward velocity of the displaced liquid will be higher which
increases the resistance to the fall of the particle and thereby
decreases its settling velocity.

The projected area of the particle reduces the effective cross-
sectional area of the container, reducing the effective flow area
of the displaced liquid and as a result its velocity increases.

The resistance on the particle will increase and that is why the settling velocity of particle will
decrease.
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The effect of walls on the dynamics of the particle thus depends on the
geometry of the vessel and therefore a generalized correlation is difficult to
propose, Thus, one has to rely on the experimental correlations,

For laminar settling of spherical particle,

d
G ={1-}-L

LB

For turbulent zone,

So the effect of walls on the dynamics of particle thus depends on the geometry of the vessel and
therefore a generalized correlation is difficult to propose. And experimentally we can rely on the
correlation for laminar settling of spherical particle, the correlation is C¢ which is equal to [1-
(ds/D)]*? so this is the correlation to count wall effect when the particle is falling in laminar
zone. And similarly this expression we are having to account the effect of wall on particle

movement when the particle is falling in turbulent zone. So once | know the value of Cs.
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The effect of walls on the dynamics of the particle thus depends on the
geometry of the vessel and therefore a generalized correlation is difficult to
propose. Thus, one has to rely on the experimental correlations.

For laminar settling of spherical particle,

[ (4
(_, ._[_ﬂ)
n Settling velocity = V, x C;

L5

For turbulent zone,

Then | can calculate the revised settling velocity of particle which is equal to VixCs. So V; you
remember this is the settling velocity which we have derived in first part of this lecture and Cs we
have just seen. So multiplication of these two will speak about the actual settling velocity of the

particle, considering the effect of wall.
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The effect of walls on the dynamics of the particle thus depends on the
geometry of the vessel and therefore a generalized correlation is difficult to
propose. Thus, one has to rely on the experimental correlations.

For laminar settling of spherical particle,

: d
(_, ._(_»)
N Settling velocity = V, x C;

25

For turbulent zone,

So and when we have consider irregular particle we can replace dp with dy that is volumetric dia.
So in this way we can study the effect of wall. Further we have six assumptions in which two we

have already relaxed.
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Assumption relaxed

f e e |

2. The particle is non-porous and incompressible. The particle is thus
insoluble in the fluid and chemically inert with it.

3. The density and viscosity of the fluid are constant,

4, The effect of surface characteristics of solid on the dynamics of the
particle is negligible.

Now here we going to relax another assumption that is particle is freely settling under gravity.
What is the meaning of this that, previously we have assumed that no other particle is available
to put hindrance in the path of single particle. So single particle movement or dynamics we have
discussed. Now here we are considering the number of particles because in usual condition we

deal with the mixture of particles or number of particles not a single particle.
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Mixture of partides

When there is a mixture of particles or when it is a concentrated
suspension, the individual particles tend to interfere with each other’s
dynamics and therefore the velocity of motion or rate of settling of each
individual particle will be considerably less than that for the free settling
conditions.

So when there is a mixture of particles or when it is concentrated suspension, the individual
particles tends to interfere with each other dynamic, and therefore the velocity of motion or rate
of settling of each individual particle will be considerably less than that for the free settling
conditions. So that is the obvious situation then when, that when we are dealing with the number

of particle the settling velocity of each particle will be decreased.
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Mixture of particles

When there is a mixture of particles or when it is a concentrated
suspension, the individual particles tend to interfere with each other’s
dynamics and therefore the velocity of motion or rate of settling of each
individual particle will be considerably less than that for the free settling
conditions.

In comparison to when they are falling freely, so Stoke’s transitional and Newton’s settling

expression.
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Mixture of particles

When there is a mixture of particles or when it is a concentrated
suspension, the individual particles tend to interfere with each other’s
dynamics and therefore the velocity of mation or rate of settling of each
individual particle will be considerably less than that for the free settling
conditions,

Stokes, transitional and Newton settling describe the behaviour of a
single spherical particle in an infinite fluid, known as free settling.
However, these madels have limitations in practical application.
Alternate considerations, such as the interaction of particles in the fluid
can modify the settling behaviour. Settling that has these forces in
appreciable magnitude is known as hindered settling.

Which we have derived in part 1 of this lecture. Describe the behavior of single spherical particle
in an infinite fluid and that is why we call it free settling. However, these models have
limitations in practical applications, alternate consideration such as interaction of particle in a
fluid can modify the settling behavior. Therefore, settling that has these forces in appreciable

magnitude we call it as hindered settling.
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Mixture of particles

When there is a mixture of particles or when it is a concentrated
suspension, the individual particles tend to interfere with each other’s
dynamics and therefore the velocity of mation or rate of settling of each
individual particle will be considerably less than that for the free settling
conditions.

Stokes, transitional and Newton settling describe the behaviour of a
single spherical particle in an infinite fluid, known as free settling.
However, these madels have limitations in practical application.
Alternate considerations, such as the interaction of particles in the fluid
can modify the settling behaviour. Settling that has these forces in
appreciable magnitude is known as hindered settling.

So when the particle is falling with the presence of other particle, we call it as hindered settling
instead of free settling.
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Hindered settling

Hindered Settling is what occurs when particles are crowded
and surrounding particles interfere with the motion of
individual particles. It's the same principle that works when
we try and fit four thousand cars coming home from work on
a road that can only fit about five thousand. Things tend to
move fairly slow, or at least, not as fast as if there was only a
few cars on the road.

So in this slide we have shown one interesting example of hindered settling, and hindered
settling is what occurs.
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Hindered settiing

Hindered Settling is what occurs when particles are crowded
and surrounding particles interfere with the motion of
individual particles. It's the same principle that works when
we try and fit four thousand cars coming home from work on
a road that can only fit about five thousand. Things tend to
move fairly slow, or at least, not as fast as if there was only a
few cars on the road.

When particles are crowded and surrounded particles interfere with the motion of individual
particle. So here up till now we have discussed in terms of number of particles. Now the same is

applicable when we are discussing the movement of cars on road.
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Hindered settling

Hindered Settling is what occurs when particles are crowded
and surrounding particles interfere with the motion of
individual particles. It's the same principle that works when
we try and fit four thousand cars coming home from work on
a road that can only fit about five thousand. Things tend to
move fairly slow, or at least, not as fast as if there was only a
few cars on the road.

Now what happens when we usually come home from the offices almost at same time all offices
are closed, so we used to have jam on the road. So the road has the capacity to accumulate 5000
cars and at that time we are having 4000 cars on road. So instead of free movement we used to
move very slowly on the road and that is the perfect example of hindered settling which we

usually see in our daily life.
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- Hindered settlit;

While the motion of large particles gets hindered, the small particles tend
to get dragged downwards by the large ones and thus get accelerated,

SANIRY L
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So the hindered settling is while the motion of large particles gets hindered the small particle
tend to get dragged down by large one and thus gets accelerated. What is meaning of this
statement that when a number of particles are falling in a cylinder then what happens, some
small particle if I am considering it is settling velocity would be significantly less in comparison
to large particle, as terminal settling velocity expression if you remember it is directly
proportional to the diameter. So small particle will move very slow in comparison to large

particle.

Now during hindered settling what happens when | am having the particle and when very large
particle is falling above this then the small particle will not fall with it is own velocity, it will fall
with the velocity of large particle and therefore the small particle is dragged down and gets

accelerated .
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Hindered settling

While the motion of large particles gets hindered, the small particles tend
to get dragged downwards by the large ones and thus get accelerated.

Each particles is in fact settling through a suspension of other particles in
the liquid rather than through the simple liquid itself,

So this type of situation also occur while hindered settling each particle is in fact settling through
a suspension of other particles in the fluid rather than through a simple liquid itself. So the
particle is following through the suspension not in a clear liquid.
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Hindered settling

While the motion of large particles gets hindered, the small particles tend
to get dragged downwards by the large ones and thus get accelerated.

Each particles is in fact settling through a suspension of other particles in
the liquid rather than through the simple liquid itself.

The effective density and viscosity of a concentrated suspension (p, and
e commonly called the bulk density and bulk viscosity) are much larger
than those of the clear liquid.

And in that case the effective density and viscosity of concentrated suspension that is pp and
which we commonly called as bulk density or bulk viscosity are much larger than those of the
clear liquid. So when we are deriving the expression of hindered settling we can consider p, and

Mp instead of prand ps.
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Hindered settling

While the motion of large particles gets hindered, the small particles tend
to get dragged downwards by the large ones and thus get accelerated.

Each particles is in fact settling through a suspension of other particles in
the liquid rather than through the simple liquid itself.

The effective density and viscosity of a concentrated suspension (p, and
Py commonly called the bulk density and bulk viscosity) are much larger
than those of the clear liquid.

The settling medium therefore offers higher resistance to the motion of
particles and thus the particle gets retarded,

So settling medium therefore, offers higher resistance to the motion of particle and thus the

particle gets retarded.
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Hindered settling

The hindered settling velocity (V,) of a particle is difficult to predict
accurately, It can be approximately estimated from Newton's law or Stokes'
law after replacing p;and by p, and p,. The bulk density p, of a
suspension ¢an be computed as,

So here the hindered settling velocity that we have denoted with V}, of a particle is difficult to
predict some approximation we can do by replacing prand ps by pp and pp, So first of all we have

to defined what is pp and what is
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Hindered settling

The hindered settling velocity (V) of a particle is difflcult to predict
accurately. It can be approximately estimated from Newton's law or Stokes’
law after replacing p,and p, by p, and p. The bulk density p, of a
suspension can be computed as,

pu= P, (1-6}* pE r. = voluma fraction of liquid in the suspansion

pp is basically the bulk density which we can define as ps ( 1- €) + pr €. So € is the volume fraction
of liquid in the suspension, so 1 - € is basically volume fraction of solid in the suspension. So that
is ps X volume fraction of solid + ps X volume fraction of liquid. So in this way we can define py.
And we can define bulk viscosity o that is p, using this expression, and if you remember the
expression of terminal settling velocity this is the same expression, but we have written it for V},

that is hindered settling why because here pr and piis replaced by pp and pp.

And here when we write the expression of py, and p, over here further we can replace the
expression in terms of ps and pr and one additional term will appear. This additional term is
basically represented as fs. So hindered settling velocity would be terminal settling velocity in to
fs, fs is the settling factor which is the ratio of hindered settling velocity to terminal or free

settling velocity.
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Hindered settling |

The hindered settling velocity (v} of a particle Is difficult to predict
accurately. It can be approximately estimated from Newton's law or Stokes'
law after replacing p; and j by p, and W. The bulk density p, of a
suspension can be computed as,

Py® P, 1-6) ¢ piE r. = voluma fraction of liquid in the suspansion

The bulk viscosity of suspenslons fs:

AT, [w )

1841, Therefore, F, {settling factor)

r/‘f,( is the ratio of hindered
'" -2 -p L ‘__/ 3 settling velocity to terminal
18y, or free settling velocity.

7

So in this way we can calculate hindered settling velocity.
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Hindered settling
E = £ 4 ? f
S T LY I |

Settling factor, F, , vs
volume fraction for
spherical particles

ane } }

(1)

If you see this is a plot of fs versus €, € will increase the fs value will increase and that is very
obvious like when we have increment in € that is when we have more volume fraction of liquid
we will have less volume fraction of solid. It means solid is available in less quantity. Therefore,
the particle will fall freely. So when we increase € we will increase fsand fis multiplied with the

Viand we can have the expression, we can have the value of V.

Therefore, € increment will give fs increment and then terminal settling velocity or hindered
settling velocity basically will increase. So that is all about this now here we have the summary

of this lecture.
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Summary of the Lecture

v Particle dynamics is defined considering single particle.

v Generalized expression of terminal settling velocity Is
derived.

v Based on different regions of f, vs Re curve, different
expressions of settling velocity are defined.

v Effects of shape, wall and other particles on termal settling
velocity are discussed.

In this lecture the particle dynamics is defined considering single particle, generalized expression
of terminal settling velocity is derived. Now based on different legends of fq vs Reynolds number
plot different expressions of settling velocities are defined, effects of shape wall and other

particles on terminal settling velocity are discussed. So that is all about lecture 1.
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