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We are going to the next application of Navier Stokes equation to viscous flows where the                

flow takes place between two parallel plates and both of them are fixed we call this as a                  

Planar Poiseuille flow as we have seen in the introduction. 

Flow between two fixed parallel plates we have come across this geometry several times              

though of course, not telling the word Poiseuille flow. So, we have two plate both of them are                  

fixed. So, now, when both of them are fixed what drives the flow, in the earlier case the top                   

plate was moving? 

So, that said the fluid in motion between the two plates when both the planes are fixed you                  

need an external agency to make the fluid flow between the two plates. That is why second                 

bullet says fluid motion caused by applying pressure gradient that is shown little more              

practically here. 

We have the two plates which are fixed and then you have a external let us say pump which                   

drives the liquid between the two plates. So, that is why we call this as fluid motion caused                  



by applying a pressure gradient. This applied pressure gradient or this pump is what which               

causes the flow between two plates. Now, and that create a velocity profile between the two                

plates. 

Now what is a practical significance of these example like we saw in the earlier case the                  

practical applications were viscometer and then shaft bearing etcetera. Now what is the             

application of this I would say extremely practical example if the geometry were cylindrical. 

So, what we are discussing is a Planar analogue of flow through a circular pipe of course,                 

throughout the industry even household you have lot of pipes they are all cylindrical and               

what we are saying is these two plates fixed which is analogous to the fixed wall of the pipe.                   

So, what are discussing is in Cartesian coordinates we are not discussing this flow through               

pipe because that requires cylindrical co ordinates. I was also shown a cylindrical shell here.               

So, that requires cylindrical coordinates. 

What here what is shown here is also a pressure driven flow which means a pump pushes the                  

liquid through the pipe so, that the actual practical scenario pump sending a liquid through a                

circular pipe. Instead of that we are discussing taking two parallel plates which are fixed               

because the pipe wall also does not move. Similarly here also the two plates does not move                 

and so, that is that is why we say it is a planner analogue of flow through a circular pipe. And                     

of course, both are pressure driven when we say pressure driven what you should understand               

is you have a pump which sense the liquid between the plates. 

And of course, we are going to consider laminar flow we have discussed two flow regimes                

laminar and turbulent when we discuss about in viscid flows which was our second level of                

application. So, here we are going to do and we saw in viscid flow happens at high Reynolds                  

number and now we are discussing the other extreme which is laminar flow so, this happens                

at low Reynolds number. 

Now in terms of their geometry that two fixed plates are shown here and axis is show here                  

and I like to mention the reason why we are chosen axis at the center y = 0 at the centre of the                       

plates. Reason is that in the planner couette flow example our axis x axis was here and then y                   

equal to 0 was at the bottom plate. 

Now, the reason for choosing this axis at the centre line is that remember we are discussing                 

this as a Planar analogue or Cartesian analogue of the cylindrical pipe, for the cylindrical               



pipe; obviously, let us say r = 0 will be the axis of the pipe. So, you also like to choose axis                      

which is similar to the axis which you would choose for flow through pipe or flow through a                  

circular pipe. 

That is why axis meaning y = 0 is chosen at the centre of the plates. And so in fact, in terms                      

of expression also it looked almost similar whatever expression we are now going derive for               

the velocity profile for this flow between the two parallel plates will be similar to the velocity                 

profile which we would derive for a flow through a circular pipe. 

And of course the fluid as property density and then viscosity and now what about the        ρ     μ       

distance between the plates? The distance between the plates is 2h, but in terms of y                

coordinates, y = h at top and y = h at the bottom that should be kept in mind, because y = 0         −               

is the axis. 
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So, as in the last example and in the case of Planar couette flow will start the continuity                  

equation and we will assume the flow is steady we will take the flow to be incompressible.                 

Let us write the continuity equation  

∂x
∂vx + ∂y

∂vy + ∂z
∂vz = 0  

And like in the earlier case we will consider flow on1y in the x direction and no flow in the y                     

direction or z direction so,  



≠0;          v ;           vvx  y = 0  z = 0  

Let us substitute in the continuity equation  

∂x
∂vx = 0  

The same conclusion which we arrived for the Planar couette flow as well, does not vary             vx     

in the flow or axial direction which we says fully developed flow of course, can have a              vx     

profile as a function of y, but the whole profile will not change in the flow direction. 

Now we consider very wide plates what do you mean by that this is a width that is very wide                    

which means that there is no variation of the x velocity, does not vary in this direction.           vx        

So,  

∂z
∂vx = 0  

Which means that  varies in the y or lateral direction onlyvx   

=∂y
∂vx / 0  

So, we have as a function of y only. Now, we said and by taking no flow in the y   vx           ≠0vx          

and z direction based on the continuity equation we concluded there is no variation of               vx  

along x and we made assumption that does not vary along z. And so, leaves us with the       vx             

condition that  varies only along y.vx  

Now, if you look at this discussion this exactly same as what we did for the Planar couette                  

flow there is no change. In fact, the same bullet us are taken in terms of text it is same only                     

the figures are changed. In both the cases the conditions , , and ,          ≠0vx  vy = 0  vz = 0   ∂x
∂vx = 0  

,   they are all exactly same.∂z
∂vx = 0 ≠0∂y

∂vx  
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Now let us proceed with the Navier Stokes equation, let us state all the conditions either                

assumptions or what we arrived from the continuity equation. So,  

, , ,  , ,  ;  v ≠0∂
∂t = 0  x vy = 0 vz = 0 ∂x

∂vx = 0 ∂z
∂vx = 0 ≠0∂y

∂vx  

Let us write the x component of Navier Stokes equation  

g  ρ( ∂t
∂(v )x + vx ∂x

∂(v )x + vy ∂y
∂(v )x + vz ∂z

∂(v )x ) = ρ x − ∂x
∂p + μ( ∂x2

∂ v2
x + ∂y2

∂ v2
x + ∂z2

∂ v2
x)  

So, if we apply the assumptions then the entire left hand side vanishes. So, LHS like in the                  

previous case of course, assumptions all are same assumptions all are same. 

So, assumptions are made such a way that the acceleration term in the left hand side vanishes                 

both the temporal acceleration and the convective acceleration vanishes. As I said            

assumptions are made such that the left hand side vanishes, we also discussed what is the                

difficulty if we are not made such assumption. 

If the transient term was there it would have resulted in partial differential equation, the               

convective acceleration terms are non-linear that is more difficult to solve.  

g  0 = ρ x − ∂x
∂p + μ( ∂x2

∂ v2
x + ∂y2

∂ v2
x + ∂z2

∂ v2
x)  



So, the left hand side becomes 0 exactly same as in the last case no difference at all once                   

again this slide is also in terms of bullets, contents, it is same as last example except for the                   

figure. 
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Now, let us write the conditions  

, , ,  , ,  ≠0vx vy = 0 vz = 0 ∂x
∂vx = 0 ∂z

∂vx = 0 ≠0∂y
∂vx  

Now we are going to look at the right hand side of the x component of Navier Stokes                  

equation this where the difference comes and the first case which is the Planar couette flow                

case there was no applied pressure gradient. 

So, there was no pressure drop along the length of the flow, in this case this is where in fact,                    

we started the whole description that is the constant applied pressure gradient which drives              

the flow and as I told you have a pump which pushes the liquid between plates  

≠0∂x
∂p  

So, the was equal to 0 in the case of couette flow. In the case of Poiseuille flow is not  ∂x
∂p                  ∂x

∂p    

equal to 0, pressure decreases along the direction of flow. So in fact, will be negative,             ∂x
∂p     

because pressure will have to decrease along the flow because it causes the fluid to flow                

between the plates and hence there is a nonzero pressure gradient along the direction of flow.  



 0 = 0 − ∂x
∂p + μ 0( + ∂y2

∂ v2
x + 0)  

So, left hand side is 0 as we have seen in the last slide, right hand side of course, gravity acts                     

along y direction. So, because . Now, coming to the viscous stress terms on    gρ x = 0   gx = 0          

the right hand side so, second derivative is certainly 0, does not vary with z so    ∂x
∂vx = 0        vx        

second derivative is once again 0. So,  

− ∂x
∂p + μ ∂y2

∂ v2
x = 0  

So, that is the simplified form of the Navier Stokes equation in the x direction, the entire left                  

hand side became 0, right hand side we have the pressure gradient term and the viscous stress                 

terms. Let us look at the y component of Navier Stokes equation  

g  ρ( ∂t
∂(v )y + vx ∂x

∂(v )y + vy ∂y
∂(v )y + vz ∂z

∂(v )y ) = ρ y − ∂y
∂p + μ( ∂x2

∂ v2
y + ∂y2

∂ v2
y + ∂z2

∂ v2
y)  

g0 = ρ y − ∂y
∂p + μ (0 )+ 0 + 0  

is 0 so, the left hand side is 0 and in the right hand side we do have the gravity term ofvy                        

course, we have the pressure gradient term and of course, the viscous stress terms are 0                

because  is 0. So, y component simplifies tovy   

− g∂y
∂p = ρ  

Once again this particular part are the y component of the Navier Stokes equation is same as                 

what you have seen for the Planar couette flow case. 
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Now, coming to the z component of Navier Stokes equation let us write down the conditions  

, , ,  , ,  ≠0vx vy = 0 vz = 0 ∂x
∂vx = 0 ∂z

∂vx = 0 ≠0∂y
∂vx  

So, the z component of Navier Stokes equation is  

g  ρ( ∂t
∂(v )z + vx ∂x

∂(v )z + vy ∂y
∂(v )z + vz ∂z

∂(v )z ) = ρ z − ∂z
∂p + μ( ∂x2

∂ v2
z + ∂y2

∂ v2
z + ∂z2

∂ v2
z )  

0 = 0 − ∂z
∂p + μ (0 )+ 0 + 0  

This is simplified to 

∂z
∂p = 0  

Once again this the z component of Navier Stokes equation is same as what we have seen in                  

the previous case of Planar couette flow. 

Let us summarize all the three Navier Stokes equations x component we have  

− ∂x
∂p + μ ∂y2

∂ v2
x = 0  

What does it tell you? It is the balance of pressure force and then viscous force. We have                  

pressure force and then the viscous force and the Navier Stokes equation has got simplified to                

the balance of just pressure forces and viscous forces. Of course, both of them are net we                 



should say net pressure force per unit volume net viscous force per unit volume. And y                

direction it is just a hydrostatic equation which is  

− g∂y
∂p = ρ  

And, z direction, 

∂z
∂p = 0  

So, these are the simplified Navier Stokes equation compare the Planar couette flow case the               

last two equation are same.  
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Now, we will have to state the boundary conditions and that is the equation we have  

∂y2
∂ v2

x = μ
1

∂x
∂p  

It is a second order ordinary differential equation. We need two boundary conditions to solve               

this second order ODE and as in the case of the Planar couette flow we will use a no slip                    

condition and as I mention no slip condition is an experimental observation which tells you               

that the tangential velocity of a fluid in contact to the solid surface is same as that of the solid                    

surface. 

So, we will come across no slip condition very frequently any almost any fluid mechanics               

problem you take you will come across no slip conditions. So, let me repeat in this case your                  



both the plate are fixed, what this condition says is the tangential velocity the tangential               

velocity of a fluid contact the solid surface is same as that of the solid surface. And in this                   

case the both the plates are fixed. So, velocity of fluid layer just in contact with the bottom                  

plate is 0 and velocity of the fluid layer just in contact with the top plate that is also 0. 

So, at the bottom plate which is fixed at , and so, at the top plate at         vx = 0   −y = h        vx = 0   

. So, both at the bottom plate and the top plate .+y = h vx = 0  


