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Ok, what we will now do is derive another form of Bernoulli’s Equation which is for                

Irrotational Flow. So, we have already derived Bernoulli’s equation for inviscid flow which             

are which happens at high Reynolds number and they are they are current regions away from                

the wall and which we called as inviscid flow. Now, we say in addition to that the flow is                   

irrotational. What do you mean by that? This diagram is familiar to us, it shows a fluid                 

element at time t and the same element at time t + t. It can undergo normal strain rate, shear            ∆         

strain rate, also undergo rotation rate. 

Now, the condition what we are saying is that, if there is no rotation of the fluid element;                  

when we say rotation rigid body rotation of the fluid element. There can be change in length,                 

there can be change in angle which means there can be non-zero normal strain, rate non-zero                

shear strain rate, but rotation is 0 that is what we mean by irrotational ok. Fluid particles do                  

not rotate that is what it means. How do you quantify it? We have seen the vorticity is given                   

by  



 x v ω∇ = 2 ˙ = ξ = 0  

So, the vorticity vector is equal to 0 vector ok, that is how we quantify irrotational flow. 

So, we said the represents rotation and now since we are considering flows which are     x v∇             

inviscid and irrotational. So, the vorticity is 0 vector, we started with the steady flow Euler                

equation; so, we will do here that as well.  

g pρ −∇ = ρ (v.∇) v  

In fact, this derivation most of the part almost till one particular stage this derivation is same                 

as what we derived for the other form of Bernoulli equation ok. So, this is the steady state                  

Euler equation.  

 x ξ  ∇( ρ
p) +∇( 2

v2 ) +∇ (gz) = v  

And then we used the vector identity and obtained this form of the equation. We also divided                 

by which means the assumption of incompressible carries over here as well. So, till this ρ                

stage whatever we have derived earlier applies here as well.  

Now, what we did next was we took a small differential length along the stream line and took                  

a dot product of the right hand side and the left hand side with that vector differential vector                  

 vector.sd   

ds ds ds ds  ∇( ρ
p) . +∇( 2

v2 ) . +∇ (gz) . = (v x ξ) .  

Now, why did we do that? Our objective was to our idea was to make the right hand side 0                    

and because, this and the vector are perpendicular to each other; we took a small    x ξv    sd            

differential length along the stream line then took a dot product so, that right hand side is 0.  

Now, for the present case the right hand side is 0 automatically, because we have taken                

vorticity to be 0 ( ). In the earlier case we made the right hand side 0 after taking a dot    ξ = 0                 

product with a differential length along this streamline. But, now right hand side is 0 anyway                

because we are considering irrotational flow which means that the vector need not be          sd      

along streamline.  

Even if you take along any line the right hand side is going to be 0, our idea of taking                    

differential length along streamline was that to make the right hand side 0. Now, that               



necessary does not arise because, the vorticity is 0 so, right hand side is anyway 0. So, d s                   

need not be along streamline, it could be along any direction and this is what you are going to                   

see in the next slide. 
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ds ds ds ds  ∇( ρ
p) . +∇( 2

v2 ) . +∇ (gz) . = (v x ξ) .  

So, let us recall what we had done for this Bernoulli’s equation the last two steps, we took the                   

dot product with the  vector and then the right hand side was 0.sd   

ds ds ds  ∇( ρ
p) . +∇( 2

v2 ) . +∇ (gz) . = 0  

And, then we had these steps where  

s xi yj zkd = d + d + d  

p.ds dx dy dz p∇ = ∂x
∂p + ∂y

∂p + ∂z
∂p = d  

So, we could express this equation first in terms of differential and then we said the sum of                  

these three terms namely pressure, kinetic and potential energy per unit mass is equal to               

constant along the stream line. And, I also told you that we take two points which are very                  

near that is what the differential means, but they should be along the stream length, that is                 

where this sum is a constant along the streamline. 

z onstantρ
p + 2

v2 + g = c  



So, that is the case if we take only inviscid flow, now because we are taking irrotational flow                  

also; now as we discuss the previous slide I need not take vector which is along the            sd       

stream line, I can just take any vector. So, let us say this is our streamline, I can take any two                     

points along any direction.  

da da da da  ∇( ρ
p) . +∇( 2

v2 ) . +∇ (gz) . = (v x ξ) .  

So, this vector is such a small differential length once again, but along any direction.  ad               

Why do we do that? Because, vorticity is 0 vector. So, right hand side is anyway 0 so, I can                    

and take two points along any direction. Now, what happens? If you repeat the same steps as                 

we have done earlier, but instead of vector I have a vector some vector along any       sd        ad     

direction, once again expressed as .xi yj zkd + d + d  

z onstant along any directionρ
p + 2

v2 + g = c  

The sum of the three energies pressure, kinetic and potential energy per unit mass is constant.                

But now along any direction the vector can be along any direction and this sum is constant      a             

along any direction. So, even so purposefully I have not shown the derivation detail because,               

we should be able to arrive at this conclusion just based on physics itself. Based on the                 

condition that if it is irrotational the right hand side is 0, statement number 1. 

Statement number 2 because, right hand side is 0 I can take dot product with a vector along                  

any direction, differential vector along any direction. So, immediately based on these two             

statements, we should be able to conclude that that some of these three energy terms is a                 

constant along any direction.  

Now, what are the assumptions?  

● Inviscid that is anyway we started with Euler,  

● Steady state flow because we took the steady state form of Euler equation.  

● Incompressible fluid remember moment we bring in density inside the gradient in            

both the derivations, the density is taken as constant which is incompressible fluid.  

● Irrotational – Vorticity is zero 

We have now seen two forms of the Bernoulli’s equation. Now, what is the extra condition                

here, extra assumption? Irrotational flow which means vorticity is 0, that is extra condition              



for the second form of Bernoulli’s equation and which results the statement that the sum of                

the energies three energy terms, is the constant along any direction.  

That is in this vorticity being zero leads to the conclusion that the sum is a constant along any                   

direction. Vorticity is not zero, if it is not irrotational, if it is rotational flow then the sum of                   

the energy is a constant along a streamline only, streamline only. It cannot be constant along                

any direction, though we said incompressible fluid it is for incompressible flow also. 

Just like we discussed for a continuity equation, what do I mean by compressible flow?               

Incompressible fluid is something like water, flow of water, incompressible flow is like flow              

of air at low velocities. So, it is applicable for that condition also.  

Now, like to mention that if you look at a typical fluid mechanics book Bernoulli’s equation                

is discussed let us say the third chapter. First chapter in fundamentals, second chapter              

considers fluids at rest and rigid body motion, third chapter itself Bernoulli’s equation is              

discussed. How do they derive then is that they take a streamline, consider a moment of a                 

particle along a streamline. 

They consider acceleration which is our this term this term and then for the forces they                

consider only pressure force and then gravity force, that is all they consider. They do not                

consider viscous forces, that is what we have also done; though we started with the               

Navier-Stokes, we wrote down the Euler equation neglecting the viscous stresses both            

converts to the same physical significance. But, the derivation is done in the beginning. Now,               

the derivation is once again done in the later part of the book as well after deriving                 

Navier-Stokes and Euler equation and that is the derivation we are discussing. 

We are not discussing the of course, in principle they are same. So, the methodology of                

derivation what we have adopted or what we have followed is available usually in the later                

part of the book. The first part of the book it is taking a particle, looking at the forces that is                     

what we have done we have also done indirectly. So, if you want in terms of reference this                  

derivation will be available in later part of the book. The derivation done in the first part of                  

the book, in principle it is same physically it is same may look slightly different. 



(Refer Slide Time: 12:18) 

 

Since we are discussing about rotational, irrotational flow, I thought I will discuss this              

difference as well nicely brought out in this book Cengel and Cimbala. What we are going to                 

differentiate is between two types of circular flows: one is a rotational circular flow, other is a                 

irrotational circular flow. So, let us look at the two figures here, it says flow A and flow B.                   

What are what is shown here are streamlines and the velocity vectors. Because, we are               

discussing circular rotational from we cannot avoid a polar coordinates, though we avoid it as               

much as possible. 

So, here what is shown here is , what is ? Velocity in the tangential direction, velocity       uθ    uθ        

in the direction, and that varies linearly with , with the radial direction. And, that is what  θ        r          

is shown here, velocity varying linearly with and this is circular flow showing streamlines       r         

and the velocity vectors. Now, let us show other look at the flow B, where once again it is a                    

circular flow because the stream lines are circular no doubt about it. But, in this case the                 

velocity once again the tangential direction, in that direction varies inversely with r        θ       

inversely with r. 

And, that is what is shown here as you go away from the center the tangential velocity                 

decreases or and r is a hyperbolic form ok, that is what is shown here. So, flow A circular,  uθ                   

flow B circular and flow A, the tangential velocity increases with r, flow B tangential               

velocity is inversely proportional to or decreases with r. Now, if you identify a fluid element                

here and if you look at the top view, what happens? It rotates along with the flow that that is                    



what you see here; but this rigid body rotation the whole body just rotates along with the                 

flow. And, give a nice example that is what this book does, what is shown here is a                  

roundabout which is ah shown here which of course, children play. 

And, if you look from the top view you can see them rotating along with the roundabout. Of                  

course, they undergo a rigid body rotation of course, just that just like this smile here also a                  

smile is here which undergo rigid body rotation. And so, this is a rotational circular flow.  

Now, let us look at the other example. In this case, if you add into a fluid element for moment                    

let us take the front view that is a physical example also, then what do you see? They always                   

stay up right. They do not undergo any rotation, all of them are staying upright of course,                 

smiling face. 

What is the physical example? Fairy wheel or giant wheel, where if you look at the front view                  

of course, whomever is there and let us say every position they remain always upright. Of                

course, they have to remain upright based on the configuration of this fairy wheel or giant                

wheel. So, in this case once again it is circular flow, but the fluid elements remain always                 

upright. So, this example where circular flow, but it is irrotational.  

So, the first case circular, but undergoes rigid body rotation. The second case, if you look at                 

the orientation of fluid element it always remains upright. Or, if you look at this giant wheel                 

or fairy wheel, the position of the people sitting in let us say in every basket or whatever they                   

remain upright. So, it is a good example to distinguish between circular, rotational circular              

flow and irrotational circular flow. 


