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We are going to derive another equation of engineering relevance and engineering            

application. Lot of applications of this equation called the Bernoulli equation and he is              

Bernoulli and this equation relates pressure, velocity, elevation under inviscid flow condition;            

that is why we are discussing this. Because the main topic of discussion is inviscid flow                

under that we discussed flow regimes. So, that we know the scope of our discussion namely                

high Reynolds number flows. And with first we discussed the Euler equation, now we are               

discussing the Bernoulli equation.  

So, inviscid regions of flow, what we are going to now is, derive the Bernoulli’s equation.                

We will start the Euler equation,  

g pρ Dt
Dv = ρ −∇  

So that is the Euler equation which we have seen in the previous discussion. And the                

substantial derivative of velocity has two terms; the local term and the convective term or the                



total acceleration is in terms of the local acceleration and convective acceleration. We will              

restrict the discussion to steady flows.  

Dt
Dv = ∂t

∂v + (v.∇) v  

So, I will consider the steady state Euler equation. So,  

Dt
Dv = (v.∇) v  

So, the Euler’s equation simplified to 

g pρ −∇ = ρ (v.∇) v  

Now we will use an vector identity; what is the vector identity? You would have a come                 

across several vector identities in your vector calculus course; for example, curl, gradient of a               

scalar is equal to 0, there is one vector identity. Similarly we are going to use this vector                  

identity, we are not going to prove this is a little involved to prove this, even Fluid Mechanics                  

book take this relationship. So, we are also taking this relationship without proving it. 

v.∇)v  ∇(v.v)  x (∇ x v)( = 2
1 − v  

What does it tell you, the left hand side we have operating on velocity and is the           .∇v      .∇v    

scalar operator, operating on a vector. So, left hand side is a vector, right hand side we have                  

gradient of . So, is a scalar, it is a magnitude of and gradient of a scalar will give  .vv   .vv          v2         

you a vector.  

Now coming to the last term, we have which is a vector and once again v cross this        xv∇            

vector gives you another vector. So, all the terms in this vector identity are vectors;               

obviously, a vector identity cannot have one term a scalar, other term is vector all of them                 

should be of the same type. So, all the terms here are in terms of vector. So, the convictive                   

acceleration term is going to be expressed in terms of the right hand side of this vector                 

identity.  
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So, let us do that,  

v.∇)v  ∇(v.v)  x (∇ x v)( = 2
1 − v  

That is a vector identity. Now what we will do is, let us try to understand the which is                  x v∇    

well known to you, it is the curl of the velocity vector which is a cross product of the gradient                    

vector and the velocity vector ok; that is should be well known to you from a calculus course.  

 x v∇ = i j k    v  v  v  |
|

∂
∂x

∂
∂y

∂
∂z x y z |

|  

Now let us express that in terms of variables which have come across in this particular                

course. So, you know the cross product can be expressed in terms of the determinant. So,                

now, let us expand this determinant. 

 x v  ∇ = [( ∂x
∂vz − ∂z

∂vy) i + ( ∂z
∂vx − ∂x

∂vz ) j + ( ∂x
∂vy − ∂y

∂vx) k]  

Let us multiply and divide by 2 and you will see something familiar to us.  

 x v  ∇ = 2[ 2
1 ( ∂x

∂vz − ∂z
∂vy) i + 2

1 ( ∂z
∂vx − ∂x

∂vz ) j + 2
1 ( ∂x

∂vy − ∂y
∂vx) k]  

Now if you look at the terms here, it should sound something familiar to us especially the last                  

term, because usually I have been working on the x y coordinate. What does it represent?                

That represents the rate of rotation in the x y plane; just to recall we express the velocity                  

gradient tensor in terms of the strain rate tensor and the rotation rate tensor or rate of rotation                  



tensor. And what we have here is one of the components of the rotation rate tensor; of course,                  

we know that this is .ω̇xy  

And so, what we have here is . Similarly the other terms also represent the rate of       ω̇xy           

rotation in the different planes, . And that is what is shown here, this figure should     , ωω̇yz  ˙ zx            

be familiar to us which we discussed when we discussed strain rates in fluid mechanics, in                

fluids and we said this figure shows a fluid element at time t and then t + t. And we said a                 ∆      

fluid element can undergo normal strain rate, shear strain rate and rotation rate. And that is                

rotation rate is what we are discussing now, this component this term represents that rate of                

rotation. 

So, let us use that, 

 x v (ω i j k)∇ = 2 ˙ yz + ω̇zx + ω̇xy  

 x v ω∇ = 2 ˙ = ξ  

So, you have a vector now; how is the vector formed? The vector is formed with the                 

components as the rate of rotation in the y z plane, z x plane and x y plane. So, let us give                      

names to them,  

the rate of rotation vector;    ω̇ =  orticity vectorξ = v  

So, vorticity vector is twice the rate of rotation vector; in short what we are discussing to                 

summary is what I discussed so far, what we did was, we use this vector identity and express                  

the convective acceleration term as some of two terms. In that we had one term, we               x v∇    

have we know that is the curl of v and we started with the determinant expression,     x v∇              

expanded that and found that the components of the vector are nothing, but the rate of          x v∇         

rotation of the fluid elements in the three planes. And that has now got a significance            x v∇       

of twice the rate of rotation vector. So, we denote that by the vorticity vector.  

So, let us do that,  

 ∇  x ξ(v.∇) v = 2
1 (v.v) − v  

So, whenever you come across or rate of rotation vector or vorticity vector this tensor      x v∇            

should come to your mind; where we have discussed all the components as the rate of                

rotation in the respective planes. And this diagram should also come in come to your mind                



which includes of course, normal strain rate, shear strain rate and rotation. But now this               

discussion is confined to the rigid body rotation; remember the fluid, this rotation tells about               

the rigid body rotation of the fluid element.  
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Now let us proceed further.  

g pρ −∇ = ρ (v.∇) v  

So, this is the steady state Euler equation, where we are taken only the convective               

acceleration. And we discuss the vector identity,  

 ∇  x ξ(v.∇) v = 2
1 (v.v) − v  

We are using this vector identity and just now we discussed that the can be represented             xv∇     

in terms of the vorticity vector. So, now, let us substitute this vector identity in terms of                 

vorticity vector in the right hand side of this steady state Euler equation.  

g p  ∇ v x ξρ −∇ = 2
ρ (v.v) − ρ  

Now, let us take this gravity vector and let us try to express that in terms of a gradient.  

− k − ∇z − (gz)g = g = g = ∇  

z i j k∇ = ∂z
∂x + ∂z

∂y + ∂z
∂z = k  



So, let me just quickly repeat; what we are doing here is, expressing the g vector in terms of                   

gradient of some variable, g vector is , k is gradient of z, g is a constant you can bring       k− g              

inside. So, it becomes .(gz)−∇   

Now let us substitute this in the above equation. So,  

∇ p ∇ − v x ξ  − ρ (gz) −∇ − ρ ( 2
v2 ) = ρ  

So, taken this equation, two things as have been done, g has been expressed in terms of                 

gradient of  and  has been expressed as velocity squared.zg .vv   

You may be wondering why express g in terms of a gradient of g z, because you have                  

gradient of pressure, we have gradient of and so we also like to express g vector in terms       2
v2             

of gradient of g z. Now what we will do, we will divide by density. But when I do, I can                     

divide by density; but I make another assumption, that density is constant which means that,               

it is incompressible fluid. 

 x ξ  ∇( ρ
p) +∇( 2

v2 ) +∇ (gz) = v  

So, we have gradient of p by , then we have gradient of , then we have gradient of g z       ρ       2
v2         

and right hand side we have . So, moment I do this, or this can be done only if I assume       x ξv                

incompressible fluid. And that is what has been done here, we have written as gradient of .ρ
p   
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So, now let us proceed further. 

 x ξ  ∇( ρ
p) +∇( 2

v2 ) +∇ (gz) = v  

Now what we are going to do now is, the previous equation take a dot product of each term                   

with a differential length d s vector along a streamline. What is shown here? This figure is                 

from our discussion on streamlines, same diagram has been shown here; where if you recall               

back streamline was defined such a way that, at any point if you draw a tangent you get the                   

velocity vector. 

Now we are considering a differential length vector and in our earlier discussion and        sd         

streamlines that differential length was shown as vector. Now we are using vector,       rd       sd   

because I am following derivation from this book Munson and can also mean, vector          s     s   

along this streamline. This vector and present vector both have a same physical    rd     sd        

significance, only nomenclature is different.  

Now, because the, it is the differential length, it is tangent to the stream line. So, the velocity                  

vector is along the vector. So, what is it we are going to do now, take the earlier equation,    sd                 

take a dot product of each term with the differential length vector along a streamline. Let           sd       

us do that and remember that;  vector is along the velocity vector.sd  

ds ds ds ds  ∇( ρ
p) . +∇( 2

v2 ) . +∇ (gz) . = (v x ξ) .  

So, vector is parallel to the velocity vector. Now let us see what happens to the right hand sd                   

side, having dotted with the vector. Let us see what happens to the right hand side. To     sd              

understand the right hand side, we will have to focus on the bottom figure. 

A velocity vector is shown here and then the vorticity vector; they can be in two different                  

directions, because one is velocity vector, other is the curl of velocity vector. So, this velocity                

vector and this is vorticity vector. Now we have one here and that is vector is shown           x ξv         

here; we know that when we take cross product of two vectors, the resulting vector is                

perpendicular to both the vectors. So, in this case that resulting vector, is perpendicular          x ξv       

to both v vector and vorticity vector. 

So, let us write down that, is perpendicular to both v and . Why is that? Suppose I       x ξv        ξ       

have vector and then vector and if you take that vector is perpendicular to both a     b        x ba        a  



vector and vector; instead of and here we have vector and vector. So, the cross  b     a   b     v    ξ      

product between  vector and vorticity vector is perpendicular to both v vector and the .v ξ   

So, now we have seen the vector and v vector are parallel, just now we have discussed      sd             

that. So, what does it mean? This is perpendicular to v vector, but this v vector is        x ξv            

parallel to the vector; which means, that this is perpendicular to vector and that   sd        x ξv     sd     

is what we write here,  is perpendicular to  vector. x ξv sd  

Which means that, the right hand side is 0, that vector is perpendicular d s vector,          x ξv         

which means the right hand side is 0.  

v x ξ).ds( = 0  

That is why we took a dot product with a differential length along a stream line. So, now, the                   

right hand side vanishes. Now let us take the left hand side and see what happens. Now here                  

we express that  vector in terms of ; similarlyrd xi yj zkd + d + d   

s xi yj zkd = d + d + d  

Now let us try to evaluate the first term here. First term on the left hand side;  

p i j k∇ = ∂x
∂p + ∂y

∂p + ∂z
∂p  

Now let us take the dot product of gradient of p with  vector;sd   

p.ds dx dy dz p∇ = ∂x
∂p + ∂y

∂p + ∂z
∂p = d  

So, left hand side first term become ; similarly, we can write for other terms as well. So,       pd            

the equation is  

 d( ρ
p) + d( 2

v2 ) + d (gz) = 0  

So, now of course, it becomes much simpler to read.  
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Now, let us rewrite that  

 d( ρ
p) + d( 2

v2 ) + d (gz) = 0  

And we can write this as  

 d z( ρ
p + 2

v2 + g ) = 0  

What does it mean?, we have taken a small length differential length along the streamline;               

which means that, we are at two points, the two points are along the stream line slightly                 

separated on the streamline. We are not considering any two points, please keep that in mind,                

we are taking two points. 

So, this tells you that the difference of this quantity; when I say quantity, sum of these three                  

terms is equal to 0 between those two points. So, if you are on a streamline and if you                   

consider two points adjustment to each other, the difference of this value between the two               

points is 0; what does it mean, that particular summation is a constant along the stream line. 

z onstantρ
p + 2

v2 + g = c  

So, is equal to constant along a streamline. Those terms should be familiar to zρ
p + 2

v2 + g               

you; the first term is pressure energy per unit mass and then the second term is kinetic energy                  



per unit mass very familiar to us; third term is the potential energy per unit mass is equal to                   

constant along a streamline.  

What is this pressure energy? This pressure energy represents the work done by the pressure               

force in moving the fluid through a distance. So, also called as flow energy; either you can                 

you tell us pressure energy or flow energy because that represents the work done by the                

pressure in moving fluid over distance. We will come across this term, once again energy               

balance; of course, all these are different forms of mechanical energy. When you say              

mechanical energy what does it mean, complete conversion to mechanical work should be             

possible. 

If you have thermal energy that cannot be completely converted to mechanical work because              

of the second law of thermodynamics; but these forms of energy are called mechanical              

energy, because complete conversion to mechanical work is possible. So, that is why the              

Bernoulli’s equation is a mechanical energy balance.  

Sometimes this equation is divided by g and written as the pressure head and the velocity                

head, and then the potential head that is also done. And so, the Bernoulli’s equation tells you                 

that, the sum of these energy is pressure energy, kinetic energy, potential energy; of course,               

all per unit mass is a constant along the stream line, not anywhere between any two point in                  

the flow field.  

What are the assumptions? Let us recall the assumptions,  

● Inviscid flow, because we started with the Euler equation.  

● We started with the steadied form of Euler equation, so we have also assumed a               

steady flow.  

● Then during the derivation, we assume density to be constant, so which means; we              

assumed incompressible fluid. In fact, not all incompressible fluid, remember when           

we discussed continuity equation it is applicable for incompressible flow also. Which            

means that, the equation what we have derived is not necessarily, for let us say water                

it is also for flow of air at low velocities that is why we define incompressible flow                 

and  

● Along the stream line.  



So, the Bernoulli’s equation tells about the sum of these three energy is a constant along a                 

streamline steady inviscid flow of a incompressible fluid. And this along a streamline where              

it that come from, remember we wanted to make the right hand side 0 where we had a                  

vorticity term, where the rotation term. To make that 0, we have to consider this balance                

along the stream line and that is why this restriction comes from, that is where this restriction                 

comes from.  


