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Having understood, total stress, strain rate, Newton’s law of viscosity, by going back and
forth between solid mechanics and fluid mechanics. Now, we are ready to derive the Navier
Stokes equation we have gathered all the background knowledge. So, writing Navier Stokes

equation are almost writing the Navier Stokes equation, just 2 steps or 3 steps of derivation

and we will be at the Navier Stokes equation.
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And, and terms of our journey to the Navier Stokes, because very obvious we are at the last
station. Namely, writing down the Navier Stokes, deriving the Navier Stokes equation using
the stress strain rate relationship just derived. Of course for a change there is no outline

reason is there is only one line which is Navier Stokes equation.
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Navier Stokes equation
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So, let us do that. The starting point is the linear momentum balance equation. So, our
starting point is the linear momentum balance equation of course, there are 3 equations one

for each direction, let us write down the equation for the x direction.
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Just to recall left hand side you have transient term, the convection term, right hand side you
have all the forces, the body force because of gravity. And, then you have surface forces

namely pressure and then the viscous stresses.

So, now we will have to express this T, , T,x, Tz in terms of the strain rates or the velocity
gradients. So, we will use the Newton’s law of viscosity, which is the constitutive equation,
when at this stage of linear momentum balance equation, it is an exact theatrical equation. Of
course, in terms of body forces we have included only that due to gravity. Other than that
there is hardly any assumption of course, the viscous stress tensor is symmetric even that is

almost universally valid.

So, in that way, the linear momentum balance equation is the theoretical equation. Moment I
go to the next step; so many assumptions have to be made that has to be emphasized. So,
moment I substitute Newton’s of viscosity, that equation is applicable only for homogeneous,

isotropic, linear viscous fluid, that has to be kept in mind.

On top of that we are going to restrict only to incompressible flow, the Newton’s law
viscosity what we have written there was a term for compressible flow as well, but we are

considering only incompressible flow. So, one more assumption added to the above list.

So, now let us write down the Newton’s law of viscosity for incompressible flow.
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So, out of six equations we require now only three of them. So, now, what we will do, take
the three terms which represent the net viscous force per unit volume in the right hand side.
And, then simplify because all other term there is nothing to discuss nothing to simplify also.
We will have to take three terms substitute the Newton’s law of viscosity and then simplify.

Let us do that, they represent net viscous force per unit volume.

So, let us write down them and then substitute.

a(;_xxx n 8;;\ arzx _d (2“ 6\4) [ (avv avx)] (;’)_Z [ (661? )]
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Navier Stokes equation
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So, let us simplify this equation. So, same equation is being written here.
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In this equation p is inside the special derivative. So, this equation can account for spatial

variation of viscosity and why should viscosity vary as a function of space, because of

probably change in temperature.

But, now we will make one more assumption that viscosity is a constant, so that I can take p

out of the derivative, which means that the equation, which I going to write after this cannot

be used, if viscosity is varying as a function of space. So, let us take out p then let us expand

the derivatives.
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So, now let us collect few terms together and, then from the remaining terms we will take out

% and what is left out are

— azvx &’ Vx & Vx fol vy Ovy v,
_“(ax2+ t2 )T\ tTe T

Of course, the second term is the divergence of velocity field and we are considering

incompressible flow which mean this is 0.
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So, we are left with only the first three terms alone .
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So, the three terms which represented the net viscous force on the right hand side, get

simplified to this term.
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Navier Stokes equation _
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So, this only matter of replacement,
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The left hand side is same and, right hand side the body force and pressure term is also same,
earlier we had the in terms of derivatives of the viscous stresses and now we have simplified
them to this term. And, similarly other directions, we know that we had linear momentum

balance one for each direction.
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So, similarly we have the Navier Stokes equation also for one for each direction. And, of

course you can put in a vector notation



AL+ Vopyve = pg, — F RV

So, that way this equation i1s more compact, how to understand this? If, we had pv,, pv,,
pv; alone, then it would have been divergence of pv vector, that is what appeared in the
continuity equation or differential mass balance equation, we have an additional v, here.

Similarly, we can write in the other directions, y direction and z direction.
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+V.pwv, =pg, — L +uViy,
AL+ Vopvv: = pg. — £ +uVi:
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Differential total mass and linear momentum balance equation
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And, now we can compare the differential total mass balance and the linear momentum

balance equation,
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that is a differential total mass balance equation. And, the differential linear momentum

balance equation, in terms of the Navier stoke equation is what I have derived just now.
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So, to compare we have the transient term in both and, we have here the convection term in
both. Of course, there the terms where for mass, here it is for momentum, right hand side we

had just O for the case of mass balance, but for momentum, we have all the forces. The body



force and the surface forces; surface force due to pressure and then viscous stresses, and that
is the comparison between these two. And, we will build on the slide after we derive
differential balance for energy and then species mass also, you know that all equations can be

compared.
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The Navier Stokes equation can also be put in the material particle view point, we have

already done this for linear momentum balance,
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What we had done earlier is. The right hand side when it was in terms of the stresses, for the

linear momentum balance we took the left hand side expressed in terms of D/Dt.

We already done that to tell you in short, we just expand we just use product rule and express

all the derivatives. And, collect terms in terms of p and then v, . So, left hand side becomes

pDDV; right hand side of course,

Dv, _ 4
pth P8 u(axz 2 azvz)

This is the more popular form of Navier Stokes equation. Though we have derived in this
Dvr

way, the left hand side with p=* is a more popular form. And, in vector notation you can

represent still more compactly,
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So, very compact notation of the Navier Stokes equation. Of course, we know

op

V= vyi vy + vk g=gitgj+tek  Vp=Z+2Z+Z
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Summary

+ Navier Stokes equation
* Viscous stress tensor on the RHS of linear momentum balance
* Express viscous stress tensor in terms of strain rate tensor (velocity gradients)

And, to summarize we have derived the Navier stoke equation, as I told you with all the
knowledge we have we just few steps to get the Navier Stokes equation, we took the viscous
stress tensor terms on the right hand side of the linear momentum balance ok. And, expressed
the those components of viscous stress tensor in terms of strain rate tensor or the velocity

gradients, moment we do that simple few steps we could get the Navier Stokes equation.

Now, in terms of our journey we have reached the destination and we just discuss the last
block here, which says Navier Stokes equation. Now, if you have a long journey after
you reach the destination you are happy. And, of course, whomever you people you meet you
recall whatever you experienced through the journey ok. It could be several people, we can
also see that here we met Reynolds we met somebody called stress, somebody called let us
say pressure, Cauchy we had somebody call strain, and then we had Newton of course, and

then Navier stokes.

So, we learnt lot of them from each of these people as well or if you make this analogous to
different places, may be you went to several places explored several places as you travelled.

And, so, you wish to recall all this. And, that is what we will do now, we will also recall



quickly our journey, we have repeated this several times I would say almost before every

lecture and in between lectures as well.

So, one last time you will go through this slide starting from beginning to the end and at
every stage we will have some few recall slides ok, that is how the summary is planned. So,
let us start with the Newton’s law for system that is where everything began, we applied the
Reynolds transport theorem and then we got the integral form of linear momentum balance,

and here are the slides.
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Integral linear momentum balance equation

+ Law of physics
* Newton's Il law of motion

* The time rate of change of momentum of 2 system is equal to the sum of all the forces acting on
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Just only few summary slides from each so, this equation represents the Newton’s second law

of motion for a system, rate of change of momentum sum of forces acting on the system.
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Integral linear momentum balance equation
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We applied the Reynolds transport theorem. So, the left hand side was expressed in terms of a
transient term and a convection term for the control volume, right hand side was still in terms
of system we took a coincident system and control volume. So, right hand side became that

for the control volume. And, that is the integral form of linear momentum balance equation.
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Integral linear momentum balance equation
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So, we were here. Now, what did we do we took small control volume, applied the integral

linear momentum balance for a small control volume. And obtain the differential form of the



linear momentum balance, the left hand side and gravity on the right hand side and that is

what we will see now.
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Differential linear momentum balance equation
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We took the integral form of linear momentum balance for a small fixed control volume.
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Differential linear momentum balance equation
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And, then expressed the transient term and the convection term, as applicable to this small
control volume, and obtain the left hand side of the linear momentum balance, the transient

term and the convection term.
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Now, we also on the right hand side we had the body forces and the surface forces at that
point of time we discussed only the body forces, that due to only the gravitational effect.
And, then we discuss the body forces rho into g vector. So, at end of this we were here, the
differential form of linear momentum balance the left hand side and gravity on right hand
side. We need to understand the surface forces, we need to express them, understand that we
took our first diversion to solid mechanics; we discuss this block stress vector and stress

tensor.
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So, few slides from there, so the stress vector and the components of the stress tensor.
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Cauchy's formula : Relation between stress vector and stress tensor
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Then, we related these two the stress vector to the components of stress tensor using the

Cauchy’s formula.
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So, we completed this block we extended this knowledge to fluids then we discussed these

two blocks, total stress, fluid under rest and pressure and viscous stress tensor.
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Some slides from here. So, once again stress vector, but now components of total stress

tensor in terms of T.
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Once again we related stress vector two components of total stress tensor by the Cauchy’s

formula.
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Then to proceed further we discuss the difference between solids and fluids we said fluid

under rest cannot sustain shear stress.
(Refer Slide Time: 19:55)

Fluids at rest
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Based on that, we discussed the stress in a fluid under static condition, which is normal

stress, which is pressure the thermodynamic pressure and is compressive hence —p.
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Fluids at rest
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So, we got the component of total stress tensor under hydrostatic condition.
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Total stress tensor for fluids
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So, we expressed total stress, in terms of hydrostatic stress and a viscous stress. So, and that
is what we discussed here, fluid at rest total stress tensor in terms of pressure and viscous

stress tensor.



So, having understood the surface forces, we could we substituted here and then completed
the differential form of linear momentum balance, gravity was already discussed we included

pressure and viscous stress on the right hand side and few slides from there.
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Differential linear momentum balance equation
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So, now our attention was on the surface forces, specific attention was on the surface forces,

we express the surface force for pressure and for the viscous stress.
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Differential linear momentum balance equation
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And, then we combined with our earlier transient term convection term and the gravity on the
right hand side, along with that we included the surface forces due to pressure and viscous

stresses represented by all this 4 T would say control volumes.
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Differential linear momentum balance equation
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And, then we derived the complete form of the linear momentum balance. I would say we
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completed the linear momentum balance, till this point we already derived, these two terms or
these two set of terms where newly added. At this stage we were here differential form of the

linear momentum balance with gravity pressure viscous stress on the right hand side.

Look liked we are almost there, but then we will have to know more to proceed further. It is
like reaching a big station and one station before you are put for a long time you do not get a
signal to proceed further. Something like that we are there, what was objective we did a
degree of freedom analysis and found that the viscous stresses are not known they are
unknowns. We will have to express in terms of the velocities of course, now we not the

velocity gradients.
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Relationship between normal strain and displacement gradient
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Then, we took a the second diversion to solid mechanics, discussed about normal strain, shear

strain, express them in terms of the displacement gradients.

(Refer Slide Time: 22:42)

Relationship between shear strain and displacement gradient
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The normal strain in terms of displacement gradient, the shear strain in terms of displacement

gradients.
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Displacement gradient tensor =

d My b 3 iI;J . - ['jl_:, i "‘i‘] 0
. Sympetric tensor Antisymwetric tensor
. Strain/ Deformation tensor Rotation tensor

+ Displacement
* Translation and Rotation - Rigid body maotion
+ Normal strain and Shear strain - Deformation

* Rigid body motion (translation and rotation) is not related to stress

+ Deformation (normal and shear strain) is only related to stress

+ Strain tensor and not displacement gradient tensor related to stress tensor

* Relate stress tensor to displacement = displacement gradient = strain tensor *

v &t

®
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And, more importantly we discussed that the displacement gradient tensor a sum of strain
tensor and rotation tensor. And, we also said that the stress tensor has to be related to the
strain tensor. Now, at that point we have completed these two blocks. We will have to extend

that knowledge analogues to fluids, where we discuss the strain rate and strain rate tensor.
(Refer Slide Time: 23:16)

Solids vs. Fluids
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Few slides from there, we have once again discuss the difference between solids and fluids to

understand that it is strain for solids and strain rate for fluids. Force depends on stain for

solids and force depends on strain rate for fluids.
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Strain rate and velocity gradient
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And, we discussed normal strain rate and

shear strain rate, we said they are material

derivatives of normal strain and shear strain, and then we related the normal strain rate to

velocity gradient, shear strain rate to velocity gradient

(Refer Slide Time: 23:48)

Strain rate and velocity gradient
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And, once again more importantly we discussed, the velocity gradient tensor a sum of a strain

rate tensor and rotation rate tensor. Once again we said the objective is to relate viscous stress

23:51)

Velocity gradient tensor =

¥ 1

Symmetric tensor

Rotation rate tensor o

Strain rate tensor
Rate of rotation tensor
w

Rate of deformation tensor
D

L

* Rigid body motion of fluid (translation and rotation rate) is not related to viscous stress

+

+ Rate of deformation of fluid (normal and shear strain rate) is only related to viscous stress
* Strain rate tensor and not velacity gradient tensor related to viscous stress tensor

+ Relate viscous stress tensor to velocity 2 velocity gradient = strain rate tensor

tensor to the strain rate tensor.

So, at that point we had discussed these two blocks. Now, having understood stress and strain
and viscous stress and strain rate, next step was to relate these two for solids through Hooke’s
law and for fluids through Newton’s law of viscosity. So, once again we took a diversion to

solid mechanics and discuss the assumptions now, because they are material dependent.
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3D farm of Newton's law of viscosity for fluids

Change of variables in Hooke's law

* Hooke's law for solids - Homogeneous, isotropic, linear elastic solid
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* Newton's law of viscosity for fluids - Homogeneous, lsotropic, linear viscous fluid_
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And, came back to fluid mechanics just wrote down the Newton’s law. And, all those are
summarized in one slide here Hooke’s law of solids assumptions and for Newton’s law of
viscosity and the assumptions here. And, these six equations represent a Hooke’s law, by
change of variables we obtain 6 equations representing Newton’s law of viscosity and that
point we had completed these two blocks. So, now it is a matter of substitution of this here

and obtaining here and that is what we have discussed just now.

(Refer Slide Time: 25:19)

Navier Stokes equation

* Linear momentum balance
L dpvy) | dpvevy) | Apvyty) p Aoy 0 M Iy | gy
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+ Newton's law of viscosity - Homogeneous, isotropic, linear viscous fluid

* Incompressible flow

i o M L il (r?ﬂ_\- r?l.'\-) _ v r}l.',)
Tax = 20 ax Sy SHE + 2y, T “(4]-: =

* Net viscous force per unit volume on the RHS
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Took the linear momentum balance equation, then substituted the Newton’s law of viscosity,

few more assumptions we made and obtained the Navier Stokes equation.
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Navier Stokes equation
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And, that we reach the destination ok. It has been a long journey and that is why it has been
called as journey to the Navier Stokes. Also like to mention that usually derivations are

considered boring.

Now, we are seen a derivation we can say that we have been deriving from Newton’s law to
Navier Stokes over several hours, several lectures, derivation can be as challenging as
interesting as knowledge as knowledge gaining as we have seen ok. We have learned so,
many concepts so, many assumptions wherever required and so, derivation helps to know the

scope of application of a particular equation.

And, once we derive you also know the physical significance of each of the terms in an

equation. Otherwise, they are there is some term the % . But, now if you look at % you
know the physical significance of that particular term. Similarly, all other terms in the

equation.

Those advantages of doing a detailed derivation, fundamentals becomes very strong. So, now,
we will have to look at applications of the Navier Stokes equation, which we will discuss in

the next classes.



