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Let us take another example. So, now, let us take an example, exactly which has the other                 

component namely the normal strain rate, but does not have shear strain rate and rotation, that                

is a use of that is objective of this example. So, velocity field is given by  

xi yjv = A − A  

Represents flow in a corner that is what we shown here in quadrant 1 and quadrant 2. Let us                   

take quadrant 1 for easy understanding and A = 0.3 second inverse and the coordinates are                

measured in metres.  

Now, just like you marked a two perpendicular lines in the earlier example, in this case we                 

will mark a region a square is marked in the fluid as shown at t = 0. Evaluate the new                    

positions of the four corner points, something like what we did in the earlier case after 1.35                 

seconds after some time interval.  



Evaluate the rates of linear deformation in the x and y directions rates of linear defamation is                 

nothing is another way of saying rate of normal strain or normal strain rate in the x and y                   

directions. And then compare area a’b’c’d’ at 1.35 seconds. And then we have to compare               

with that area with area a, b, c, d at t = 0; whether it will change or not we will see that. And                        

then comment on the significance of this result. So, you have flow over a corner and then, we                  

are in this region you are let us say marked some red colour dye this is square region and we                    

are tracking that.  

Solution:  (Refer Slide Time: 02:49) 

 

Now, tracking a particular point is something similar to what we have done earlier. If you                

track a particle is equivalent to finding the path line of that particular particle. So, find                

position of particles. So, we have four particles a, b, c and d; we will have to evaluate that                   

position after some time interval which is nothing, but finding the path line. If you want to                 

show the progress of these points then we draw the path line. Or if you want the only                  

endpoint in the end point of the path line will give you the final position. So, we will find out                    

the path line so that at any time t we will know the position of a, b, c and d. 

So, let us find a general expression. So, we will have to recall what we discussed when we                  

did examples on path lines. When we discussed the theory for path lines, so the velocity field 

xi yjv = A − A  



We used the velocity of the fluid to find the path line; velocity of the fluid that is Eulerian                   

description which is equal to the velocity of the particle given by rate of its displacement in                 

the present case in the x direction.  

xvx = A p = dt
dxp  

And this we have used when we derived substantial derivative when we discussed path line               

same cost of concept is being used here. The Eulerian velocity field is equal to velocity of the                  

particle which happens to at that which happens to be at that particular location, which is                

given by the rate of change of its displacement the present case x direction. 

So, now, because our coordinates are x I am going back to x, but that is the physical principle                   

ok. So,  

x→ dt→  dt n t→x edt
dx = A x

dx = A ∫
x

xo
x
dx = ∫

t

0
A → ln l ( x

x0
)  = A = x0

At  

Now, let us do the same exercise for the y direction, we will equate the y component of                  

velocity to the rate of change of y displacement of the particle. 

− yvy = A p = dt
dyp  

And, 

− y→ − dt→ − dt n − t→y edt
dy = A y

dy = A ∫
y

yo
y
dy = ∫

t

0
A → ln l ( y

y0
)  = A = y0

−At  

So, integration rearrangement gives you this equation relating the y coordinate of the particle              

as a function of time. So, at any time t you can calculate the x co ordinate and the y                    

coordinate and in this particular case we are asked to calculate the coordinates. If you want to                 

track this region as you progress then you can substitute for different values of time and get                 

the x and y coordinates. This example what we are asked to do is to find the coordinates at t                    

equal to 1.35 seconds. 

 a b c d 

t = 0 (1,1) (1,2) (2,2) (2,1) 



So, in this table the first row shows the coordinates at time t = 0. Second row shows the                   

coordinates how do I obtain I just substitute at t = 1.35. 

So, the second row gives x and y coordinate of a, b, c, d after time interval of 1.35 seconds.                    

Now, see the concept of path line were discussed sometime back and we have now used it                 

and interpreting in a different way. What we have actually calculated is only path line but                

now, we are going to analyse in terms of what happens to this region and what is the                  

implication of the velocity field on this particular region. 

 (Refer Slide Time: 08:35) 

 

So, let us show the old and new position of the corner points. So, the this is the square region                    

marked at time t = 0 and it has become a; it has become a rectangle at t = 1.35 seconds. These                      

are the coordinates of a’, b’, c’ and d’ and it has become a rectangle. So, let us see how do we                      

understand this.  

 (Refer Slide Time: 09:02) 

t = 1.35 (3/2, 2/3) (3/2, 4/3) (3, 4/3) (3, 2/3) 



 

Now, the velocity field was given by  

xi yjv = A − A  

So, rates of linear deformation let us calculate them the normal strain rates  

.3 s∂x
∂vx = A = 0 −1  

The value is 0.3 second inverse, which means that there is elongation in the x direction. Now,                 

let us evaluate the normal strain rate in the other direction which is  

− − .3 s∂y
∂vy = A = 0 −1  

This means that there is shortening in the y direction. And that is what we have seen if you                   

see compare b, c and b’c’, there is elongation which is for line segment along x direction.                 

And if you compare a, b and then a’b’ there is a shortening in the line segment which was                   

along the y direction. 

So, for line segment along x direction there is elongation as shown by the value of 0.3 second                  

inverse line segment along y direction there is decrease in that length and given by the 0.3                −  

second inverse. So, keep in mind that as we have discussed earlier, this tells about rate of                 

elongation and also rate of change of length per unit length.  

Now, the rate of angular deformation is  

γ̇xy = ∂x
∂vy + ∂y

∂vx = 0  



So, in this case there is no change in angle; when I say no change in angle, if you take 2 line                      

segments perpendicular to each other they remain as such that is what you see here also. The                 

angle b a d is 90 degrees the angle b’a’d’ also 90 degrees there is no change in angle at all.                     

That is why I said earlier example we had angular deformation and of course, rotation in this                 

example angular deformation is 0 we will see rotation is also 0. But, we have normal strain                 

rates.  

So, rate of rotation  

 ω̇xy = 2
1 ( ∂x

∂vy + ∂y
∂vx) = 0  

Such a flow is called irrotational where, you do not have any rotation such a flow is called                  

irrotational and that is what you see this animation. Now, for showing this animation I               

calculate the coordinates at every instant of time this a’b’c’d’ tells you the coordinates after               

sometime t equal to 1.35 seconds. But now, for this animation I can find out the path line                  

equations substitute t equal to 0.1, 0.2, 0.3 whatever time interval and then calculate the               

position and plot them and the region covered by a, b, c, d is shown as red so that we see it as                       

a region moving.  

And as you see it also represents the flow around the corner, if we have seen the streamlines                  

where we had flow around the corner and that is also represent there is also represented by                 

this region which we are tracking ok. And we can see that the square becoming a rectangle                 

how the square gradually becomes rectangle this was one initial square. And then let us say a                 

final rectangle a t equal to 1.35 here you see how the square evolves gradually to the                 

rectangle. And of course, remember it is continuously deforms that will always should be              

kept in mind we said fluid continuously deforms. 

So, as long as the flow as long as you track this will continue to deform of course, for the                    

sake of simulation we have stopped and replaying it again, but otherwise continuously             

deforms ok. So, in the earlier example no normal strain rates only angular deformation              

rotation were present in this particular in this example normal strain rates are present angular               

deformation and rotation are absent. This is relatively simpler case compared to the earlier              

case, when you have angular deformation rotation it becomes little difficult to analyse in              

terms of the what you see. 



And what we analyse remember when we said in the earlier example what we see is a                  

summation of all the effects. Here because no angular deformation and rotation whatever you              

see is representing what are we calculated in terms of normal strain rates. Earlier it was                

representing both the combined effect of both the deformation and the rotation. 

 (Refer Slide Time: 15:28) 

 

Now, let us calculate the volumetric strain rate. So, the volumetric strain rate we start with                

the velocity field, which is  

xi yjv = A − A  

We have seen how to express volumetric strain rate which is that fractional rate of change of                 

volume. And we have seen that can be expressed in terms of  

.v .3 .3∇ = ∂x
∂vx + ∂y

∂vy = A − A = 0 − 0 = 0  

What does it tell you, there is no change in volume, rate of change of volume, or fractional                  

rate of change of volume is 0; the volume of the element does not change with respect to                  

time. 

So, in this present case it is not volume it is area because we are considering 2D. So, let us                    

verify that numerically, the area of the initial square both the sides are 1 unit so area is 1                   

meters. So, the final area should also be 1 metre square.  



Let us calculate that what is the final area a’b’c’d’; if you consider points a’d’ the length of                  

the line a’d’ which is difference in the x coordinate of a’d’ which is . Now, the               3( − 2
3)    

difference in the y coordinate of, let us say a’b’. So, it is  so, ( 3
4 − 3

2)  

rea of  a’b’c’d’  m  A = 3( − 2
3) ( 3

4 − 3
2) = 1 2  

So, we have theoretically proved that the volume or area cannot change based on our               

calculation also we have proved that the area does not change. So, no change in volume of                 

fluid element; why is it happening? Two rates of linear deformation are equal and opposite               

the normal strain rate in the x direction is positive because length is increasing. And normal                

strain rate in the y direction is negative because, the length is decreasing they are equal and                 

opposite hence there is no change in the area. Whatever increase in area because of the                

increase in length along x direction is compensated by the decrease in area because of the                

decrease in length along the y direction. Of course, such a flow is incompressible that is what                 

we have seen.  

I like to discuss another view point remember we discuss the significance in two        .v∇        

different ways; the present way is that fractional rate of change of volume. Now, what is the                 

earlier way it was relating to a Eulerian view point, present view point is Lagrangian the                

earlier view point is Eulerian. And remember these terms where derived as part of the               

continuity equation where you took as control volume like this. Let us say if you take                ∂x
∂vx  

how did it come? We took the mass flow leaving through the right face mass flow entering                 

the left face and then we took the difference and so,  represents.∂x
∂vx  

So, let us say we have rho there it represents net mass flow leaving the x direction per unit                   

volume for the moment leave per unit volume. So, just represent something like net mass               

flow leaving in the x direction. Because there is no rho it tells net rate at which volume leaves                   

in the x direction and what about that tells you net rate at which volume leaves in the y       ∂y
∂vy              

direction of course, per unit volume.  

Now so, if you look from a Eulerian viewpoint if you take a small location what happens is                  

that because, is positive which means that there is net flow leaving in the x direction.  ∂x
∂vx                

And then because is negative, which means that there is net inflow in the y direction they   ∂y
∂vy                

compensate each other and hence the net rate of flow volume through all the control surfaces                

is equal to 0. 



So, that is two different view points for , this example does not require the second view        .v∇          

point, but because we have discussed the 2 viewpoints for . And numerically we can see          .v∇       

in this example that there is net outflow in one direction the x direction net inflow in the y                   

direction and hence if you sum up all the through all the directions is 0 other way of looking                   

at it.  

 (Refer Slide Time: 21:13) 

 

When we almost began the course. We introduced what a fluid particle is and we defined a                 

fluid particle as a small deforming volume and then, we took this example and showed that                

the fluid particle should represent whatever is happening to the flow field. And then we said                

along the flow field the particle elongates becomes smaller etcetera in the direction etcetera. 

 (Refer Slide Time: 21:50) 



 

And we also showed this animation where we said the earlier title was demonstration of fluid                

particle is same example now, I say call it as a flow through a converging nozzle. And then                  

we had simulations in 2 scales one when I just ran we were tracking the fluid particle. And                  

then we said should be very small and then we said for the same time interval it travels longer                   

distance as it approaches to as it travels along the length of the channel.  

Because, it is a converging channel the velocity increases along the direction of flow then               

what we discussed was we zoomed this region small this region. And then that is what we                 

saw in there right animation, where we can clearly see that the fluid for the fluid element the                  

length of the fluid element increases and then the height decreases. And then the statement               

which I made at that point of time was that the length increases because, the velocity                

increases along the flow direction. And I said correspondingly there is a decrease in the               

height of the fluid element. Now, they need not be accepted as such. 

Now, we can by theory based our discussion we can explain those statements, I will just                

repeat earlier. We have looked at this element fluid element or fluid particle and said that its                 

length increases along the flow direction and height decreases along the flow direction. We              

explain saying that the length increases because the velocity increases along the flow             

direction. Correspondingly, I said the height decreases. Now, we can physically reason out             

these two statements that is what we will do in the next slide. 

 (Refer Slide Time: 23:54) 



 

Now, what is the velocity field for a converging nozzle is given by  

yj;        A .3 sv = A (1 )+ x i − A  = 0 −1  

But, the way in which we should view is that x velocity is a function of only x and the y                     

velocity is a function of only y. That is how we should view for our purpose for calculating                  

rate of normal strain shear strain the x component of velocity depends on x. Then as we have                  

calculate in the previous example, we have a nonzero value of and that is positive why?           ∂x
∂vx       

The x component increases along the x direction. That is also is line with the physics of the                  

geometry because of the reduction area the x component should increase. Now, what about              

the y direction? It is A and we have a 0.3 second inverse and there is reduction in the     −      −          

height of the fluid element. 

So, because of this only when we run the simulation because of this only this tells you that                  

there is elongation in the x direction. Now, this clearly justifies our earlier statement that               

because the velocity increases along the x direction there is elongation of the fluid element               

earlier we made as a qualitative statement. Now, we can quantitatively establish in this              

statement.  

If you look at the normal strain rate in the y direction it is negative and that is why you see a                      

decrease in the height of the fluid element. Now, we made a statement that accordingly or                

correspondingly there is a decrease in the height of the fluid element how do you explain that.                 

Before that like in the previous case there is no angular deformation there is no rotation                

because,  depends on x only,  depends on y only.vx vy   



If you calculate like in the earlier case you get a value of 0; that this explains y   .v∇                 

accordingly or correspondingly because it is incompressible flow should be 0. And so,        .v∇       

when there is increase in length along x direction it should be compensated by decrease in                

length along the y direction. That is why we said increase in length along x direction because                 

of increase in velocity correspondingly there is a decrease in length along the y direction why                

their correspondingly? Because,  for incompressible flow..v∇ = 0  

So, when one direction there is rate of increase in length, there is a decrease in rate of length                   

in the other direction, we are kind of connected we have seen this in the previous example, in                  

terms of concepts just want to connect this example with the simulation which have seen               

earlier where we introduced the concept of particle. 

 (Refer Slide Time: 26:53) 

 

So I think that brings us to the close of our this lecture, where we I have discussed fluids                   

strain rate in fluids analogous to strain and solids. So, in terms of a journey to the Navier                  

Stokes, we have derived the differential form of linear momentum balance with a viscous              

stresses in the right hand side we said we need to express that in terms of the velocity                  

gradients to understand velocity gradients.  

We took a diversion to solid mechanics understood normal strain, shear strain, displacement             

gradient rotation. You also understood how to decompose or split differential displacement in             

terms of deformation and rotation. And now, we have analogously explained for the case of               

fluids, but everywhere we had rate. 



So, everywhere we had rate so, normal strain rate shear strain rate and velocity gradient and                

then the differential velocity is sum of deformation rate less rotation rate. Superficially we              

say just addition of rate, but we discuss that based on the difference between the behaviour of                 

solids and fluids ok. And of course now, we will go back once again to solid mechanics to                  

relate stress and then strain.  

We need to relate viscous stress and velocity gradients and we said instead of velocity               

gradients, we will relate only to the rate of defamation. But, before doing that we will go to                  

the solid mechanics once again to understand and relate stress and strain. So, that when we                

come to fluid mechanics we can easily extend and relate the viscous stress and strain rate of                 

course, this we will understand as we go along.  

 (Refer Slide Time: 29:02) 

 

To summarise, we started with the distinction between solids and fluids in terms of response               

to a tangential force. And we understood say deformation for solids is rate of deformation for                

fluids and rate of deformation could be normal and shear strain rate one is rate of change of                  

length other is rate of change of angle. And we also discussed that they are material                

derivatives of strain ok, we also discussed about rate of rotation, we discussed about              

volumetric strain rate and the volumetric strain rate is represented by the divergence of              

velocity field.  

And so, we understood two ways or physical significance of the divergence of velocity in two                

different ways and based on that we express the equation of continuity from the material               



particle view point. We discussed the velocity gradient tensor analogous to the displacement             

gradient tensor for solids. And then we related the strain rate to the velocity gradients and we                 

also discussed the decomposition of fluid motion which is expressing the velocity gradient             

tensor as sum of strain rate tensor and rotation rate tensor.  


