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In case of solid mechanics, we moved on further to look at the components of displacement                

or look at the different components of total displacement that we did by getting an expression                

for displacement gradient tensor in two different ways. The first method was more             

mathematical, the second one the expression was derived by considering the different            

components of displacement. So, the next few slides are recall slides which we have              

discussed under solid mechanics. 

So, this slide shows the derivation for displacement gradient tensor using the first method              

which is the mathematical method. So, we consider the two particles, looked at the difference               

in displacement and expressing the total derivative in terms of partial derivatives. 
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We could express the relationship between , , in terms of , , and the      ud x  ud y  ud z     xd  yd  zd    

tensor relating these two is the displacement gradient tensor. So, this is the first method in                

which we arrived at the displacement gradient tensor, the more mathematical way.  
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Second what we did was we looked at the components of total displacement. We consider               

normal strain only, shear strain only, rotation only.  
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And, then once again got an expression between , , and , , and the        ud x  ud y  ud z   xd  yd  zd    

second way was more physical because we consider the normal strain, shear strain and then               

rotation. 

du  du  du  [ x y z ] = ε  ε  ε  ε  ε  ε  ε  ε  ε  [ xx xy xz xy yy yz zx yz zz ] dx dy dz [ ] + 0 −  ω  ω  0 −  −  ω  0 [ ωxy xz xy ωyz ωzx yz ] dx dy d[
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So, this equation shows the relationship between , , and , , obtain by       ud x  ud y  ud z   xd  yd  zd    

the using the mathematical method, the first method. And, these two are the equations obtain               

using the second method where we considered the components of total displacement one at a               

time namely normal strain, shear strain and then rotation and here the equation is in terms of                 

the component of the two tensors. Now, from these two equations we could write that the                

displacement gradient tensor is a sum of these two tensors. 

 Normal strain only Shear strain only Rotation only 

u∆ x  ∆xεxx  ∆y ∆zεxy + εzx  ∆y ∆z− ωxy + ωzx  

u∆ y  ∆yεyy  ∆z ∆xεyz + εxy  ∆z ∆x− ωyz + ωxy  

u∆ z  ∆zεzz  ∆x ∆yεzx + εyz  ∆x ∆y− ωzx + ωyz  
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So, the displacement gradient tensor is a sum of a two tensors.  
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The first one was symmetric, second one was antisymmetric. The first one was called as the                

strain or deformation tensor, second one we called as the rotation tensor. So, what we have                

done is split the displacement gradient tensor into two tensors; a strain tensor and a rotation                

tensor. Objective was to separate the rigid body motion from the deformation. We looked at               

difference in displacement so that translation is taken care. To remove the rotation part, we               

considered each of the component separately namely normal strain, shear strain, rotation            

separately, include the normal strain and shear strain into the strain tensor. And so, the other                

tensor just represents the rotation component. 

So, by doing so we have separated the rotation component from the deformation component              

that is what is shown here displacement consists of rigid body motion and deformation. Rigid               

body motion consists of translation and rotation, translation has been taken care by taking              

difference in displacement and now rotation has been separated. And so, we are left with only                

normal strain and shear strain in the deformation or strain tensor. 
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Now, analogously we will express the velocity gradient tensor in terms of two tensors. Here               

again it is done by deriving an expression for the velocity gradient tensor in two different                

ways; one the mathematical way the other by splitting into components; the normal strain              

rate, shear strain rate and the rotation rate. The case of fluids, we will just rederive the first                  

method the mathematical way alone, second one we will just analogously express it. 

So, now what is it we are going to do now? We are going to derive the expression for velocity                    

gradient tensor using the first method which is the mathematical way. Now what we do for                

that? We consider two points P and Q, the coordinates are of P are x, y, z coordinates of Q                    

are , , . So, they are two neighboring points in the fluid domain, velocity xx + d  yy + d  zz + d             

of fluid at point P let us denote by  also equal to the velocity field at x, y, z.vP   

(x, y, z)vP = v    

Now, if velocity of fluid at point Q will denote it as and which is equal to the velocity             vQ         

field at , , .xx + d yy + d zz + d   

, , (x xvQ = v + d yy + d z)z + d  

Now, let us look at the difference in velocities. Difference between the velocities a two               

neighboring points which we denote as  

v (x, y, z)d = v (x x, y y, z z)+ d  + d  + d − v    



So, to proceed further we will write in terms of the components; let us write it for the x                   

direction  

v (x, y, z)d x = vx (x x, y y, z z)+ d  + d  + d − vx    

So, this tells the vectorial difference in velocities between two neighboring points. Now, let              

us take the and expand that in Taylor series, some multivariable   vx (x x, y y, z z)+ d  + d  + d          

Taylor series because the function of three variables x, y, z.  

dx dy dzvx (x x, y y, z z)+ d  + d  + d = vx (x, y, z)  + ∂x
∂vx + ∂y

∂vx + ∂z
∂vx  

So, if you substitute this Taylor series expansion in the previous equation,  

v dx dy dzd x = ∂x
∂vx + ∂y

∂vx + ∂z
∂vx  

So, what this tells you is is the total difference in x component of velocity with in the      vd x              

two points that has been expressed in terms of the partial derivatives. Other way of looking at                 

it is expressing the total derivative in terms of partial derivative; two ways of looking at it. 
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Let us repeat this for the other directions. Let us write for ,   and then ,vd x vd y vd z   

v dx dy dzd x = ∂x
∂vx + ∂y

∂vx + ∂z
∂vx  

v dx dy dzd y = ∂x
∂vy + ∂y

∂vy + ∂z
∂vy  



v dx dy dzd z = ∂x
∂vz + ∂y

∂vz + ∂z
∂vz  

Now, express them in terms of a matrix,  

 dv  dv  dv  [ x y z ] =          [ ∂x
∂vx
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∂z
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∂vz

∂z
∂vz ] dx dy dz [ ]  

So, left hand side, we have the column vector , and then , and right hand side,         vd x  vd y    vd z      

we have dx, dy, dz and then the matrix which relates these two vectors is the velocity                 

gradient tensor. Why is it a tensor? First velocity has three directions. Now we are looking at                 

the gradient of the velocity, this gradient can be along three directions. So, totally giving us 9                 

combinations of directions and hence it is a velocity gradient tensor. 

So, what is that we have done now is derived an expression for the velocity gradient tensor by                  

using the first method which is the more mathematical method. We are not going to derive                

the expression using the second method we will straight away write analogously from our              

knowledge in solid mechanics.  

(Refer Slide Time: 11:55) 

 

That is what is shown here though. So, this equation is from the previous slide expressing                

velocity gradient tensor using the first method.  
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Now, if you follow a approach similar to what we have done for solid mechanics as we had in                   

the second method, what is it? Considering normal strain rate separately, shear strain rate              

separately, rotation rate separately, then we will be able to write this equation.  

dv  dv  dv  [ x y z ] = ε  ε  ε  ε  ε  ε  ε  ε  ε  [˙xx ˙xy ˙xz ˙xy ˙yy ˙yz ˙zx ˙yz ˙zz ] dx dy dz [ ] + 0 −  ω  ω  0 −  −  ω  0 [ ω̇xy ˙ xz ˙ xy ω̇yz ω̇zx ˙ yz ] dx dy[

This also relates , , in terms of dx, dy, dz, but splits into two tensors. And the   vd x  vd y  vd z               

next equation writes this equation in terms of components. 
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So, now based on this equation and these equations, we can write the velocity gradient tensor                

as sum of these two tensors and that is what is shown in the next slide. 
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The velocity gradient tensor that is in the left hand side is equal to sum of two tensors.  
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The first one is a symmetric tensor as we can see the off diagonal elements are same the                  

symmetric tensor. And, the second tensor is antisymmetric because the off diagonal elements             

are say of same magnitude opposite in sign; and how do we name them? In the case of solids                   

we call it as strain tensor because it contained information about deformation namely normal              

strain and shear strain.  



Now, this tensor now contains information about rate of deformation namely normal strain             

rate and shear strain rate. All the diagonal elements represent the normal strain rate and the                

off diagonal elements represent the shear strain rate by 2. So, we call this strain rates the                 

strain rate tensor. Of course, the second tensor was called as rotation tensor for a solids now                 

for the case of fluids it is the rotation rate tensor. So, we have split the velocity gradient                  

tensor into the strain rate tensor and the rotation rate tensor just like we expressed the                

displacement gradient tensor as some of strain tensor and rotation tensor. So, this slide is that                

way analogues to what we have discussed for solids. 

Other names are there, we have seen deformation in solids is analogues to rate of deformation                

in fluids. So, other name is rate of deformation tensor and all this second tensor is also called                  

as rate of rotation tensor. In terms of more popular terminology strain rate tensor is more                

popular and then rate of rotation tensor is more popular.  

We will introduce some nomenclature so; that it will becomes handy for us later on. The                

velocity gradient tensor left hand side is L, right hand side that the rate of deformation tensor                 

is D and rate of rotation tensor is W. D is used so, that represents deformation we use omega                   

for rotation. So, we are using capital W for tensor.  

L = D + W  

Where, 
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Similarly, 
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Now, whatever follows is once again analogues to what we discuss for solid mechanics.              

Rigid body motion of fluid is not related to viscous stress. What is that mean? Remember our                 

objective was to relate the viscous stress tensor to the velocity gradient and then to               

understand velocity gradient, we went to solid mechanics understood displacement gradient.           

We come back to fluid mechanics to and then discussed about rate of deformation velocity               

gradient etcetera. 



Now, what is that that has to be related to the viscous stress? Based on the discussion on solid                   

mechanics and now for fluids also, the rigid body motion of fluid what is that the entire body                  

just translating and then the entire body rotating is not related to the viscous stress. When a                 

fluid body just translates and then just rotates there are no internal viscous stresses developed.               

So, that is not related to the viscous stress. So, this tensor is not related to the viscous stress. 

Rate of deformation of fluid which is which includes normal and shear strain rate that only is                 

related to the viscous stress. So, the first tensor is what is related to the viscous stress.                 

Whenever there is normal strain rate, shear strain rate; then we have viscous stresses. So, we                

have to relate the rate of deformation of fluid and viscous stress which means that strain rate                 

tensor and not velocity gradient tensor related to the viscous stress tensor. We said we need to                 

relate the viscous stresses to velocity. 

Then we said velocity gradient, but now we are saying it is not the entire velocity gradient                 

only a part of it which is the strain rate tensor or the rate of deformation tensor. Why is that?                    

Because, velocity gradient tensor also includes the rate of rotation tensor, but we have seen               

that the viscous stress tensor is not related to the viscous stresses are not related to the rate of                   

rotation just like we discussed for solids. Remember we said if you have a solid under just                 

translate just rotates, there are no internal stresses. But if you pull a solid and then and then                  

change the angle of a solid, then internal stresses are developed ok. So, that is why the normal                  

strain shear strain was related to the stress. 

Similarly here whenever there is normal we have a fluid element that length keeps increasing               

angle between two line elements keeps changing, then viscous stresses are developed in             

fluids. So, the strain rate tensor not the velocity gradient tensor is related to the viscous stress                 

tensor. And so, the last line we need to relate viscous stress tensor to velocity that is what we                   

said. A better way of saying is to velocity gradient is a still more process way of saying is                   

related to the strain rate tensor. So, we need to relate the viscous stress tensor to the strain rate                   

tensor.  
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So, like to discuss a terminology which we have not mentioned so far namely fluid               

kinematics. If you look at fluid mechanics books, fluid kinematics is discussed among the              

first or second chapters. Let us look at the definition fluid kinematics deals with describing               

the motion of fluids without necessarily considering the forces that cause the motion. So, just               

talks about motion of fluids, does not give importance or pay attention to what causes the                

fluid motion or the forces which causes the fluid motion.  

So, what are the topics which are discussed under fluid kinematics?  

● The Lagrangian, Eulerian approaches of describing flow,  

● Substantial derivative,  

● Visualization of flow patterns; namely Streamlines, Pathlines and Streaklines,  

● Distinction between system and control volume,  

● Reynolds transport theorem and then  

● Decomposition of fluid motion.  

What is decomposition of fluid motion, that is expressing the velocity gradient tensor in              

terms of the strain rate tensor and then the rotation rate tensor which means that we are                 

decomposing the fluid motion into deformation and then rotation. 

The way in which we have discussed is we have discussed all these topics under that heading                 

fundamental concepts at the beginning of the course just like any fluid mechanics book could               



do, but based on the organization of the course, we have discussed this decomposition of               

fluid motion just now under when we are discussing strain rate for fluids. So, but these topic                 

put together all come under the heading of fluid kinematics or kinematics of fluid motion. 

So, what is fluid dynamics? Fluid kinematics within focus on the forces; so, fluid dynamics               

deals with the analysis of specific forces necessary to produce the motion of fluid. Fluid               

kinematics we dealt only with motion of fluid without considering the forces. Fluid dynamics              

we pay attention to the forces which cause the motion of fluid. 


