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So far the linear momentum balance was viewed from a control volume point of view, what                

does that mean; you derive the balance equation taking a small control volume then we shrink                

it to a point and then we were discussing in terms of rate of change of momentum of course,                   

all per unit volume, rate of change of momentum in that small volume and whatever is                

whatever momentum flowing in flowing out and then right hand side we have sum up all the                 

forces. 

Now, we are going to take a different look at the left hand side right hand side is going to still                     

remain same and that is why the title says linear momentum balance from a material particle                

view point. Let us go through that and then you will understand the title clearly. One other                 

importance of this slide is that we are going to do this series of step later on also few other                    

place in the course. So, we will repeat this later on as well. 

So, the idea of this discussion is that we have derived the linear momentum balance and                

interpreted the left hand side in terms of what is happening over a small region, rate of                 

change of momentum in that region and whatever momentum flow enter and leaving in that               



region. We are going to have a different view point for the left hand side let us see how do we                     

do that. 

g∂t
∂(ρv )x + ∂x

∂(ρv v )x x + ∂y
∂(ρv v )y x + ∂z

∂(ρv v )z x = ρ x − ∂x
∂p + ∂x

∂τ xx + ∂y
∂τ yx + ∂z

∂τ zx  

Now, I will use the product rule and expand the derivatives on the left hand side. Now,  

v v vρ ∂t
∂(v )x + vx ∂t

∂(ρ) + ρ x ∂x
∂(v )x + vx ∂x

∂(ρv )x + ρ y ∂y
∂(v )x + vx ∂y

∂(ρv )y + ρ z ∂z
∂(v )x + vx ∂z

∂(ρv )z  

What is that we have done take in the left hand side, applied product rule for all the terms                   

first term is very straight forward. The second third and fourth term we have clubbed               vρ x  

together and separately. The significance of is the mass flux and we will see why do  vx      vρ x            

we do that in next step as well. 

So now I will combine all the terms  

 ρ[ ∂t
∂(v )x + vx ∂x

∂(v )x + vy ∂y
∂(v )x + vz ∂z

∂(v )x ] + vx [ ∂t
∂(ρ) + ∂x

∂(ρv )x + ∂y
∂(ρv )y + ∂z

∂(ρv )z ]  

Now, terms in the second bracket is a equation of continuity we know that goes to 0; both for                   

compressible flow and incompressible flow 

∂t
∂(ρ) + ∂x

∂(ρv )x + ∂y
∂(ρv )y + ∂z

∂(ρv )z = 0  

So, and second term just vanishes this terms inside the square bracket is nothing, but the                

continuity equation or the differential mass balance is equal to 0. Now, left hand side if you                 

look at that  

 ρ .∇( ∂
∂t + v ) vx = ρ Dt

Dvx  

Of course, we discussed the substantial derivative many classes earlier and we also             

mentioned that we will come across later in the course this is the point where we are coming                  

across the substantial derivative. 

If you look at the terms in the within the first square brackets they are nothing, but                 

. So, the left hand side can be written as ; is the density and is the .∇( ∂
∂t + v ) vx           ρ Dt

Dvx  ρ      Dt
Dvx    

substantial derivative of velocity of course, in the x direction. 

So, what is that we have done, we have taken the left hand side and did some simple                  

mathematical steps used the equation of continuity and then we have proved that the left hand                



side can be written as , as I told you we will come across similar steps later on energy     ρ Dt
Dvx               

balance also. 

Now, let us rewrite the linear momentum balance expressing the left hand side in terms of                

this substantial derivative.  

gρ Dt
Dvx = ρ x − ∂x

∂p + ∂x
∂τ xx + ∂y

∂τ yx + ∂z
∂τ zx  

So, now left hand side, I would say easier to remember also compared to the earlier linear                 

momentum balance this equation is easier to remember and starting point for many problems              

as well. So, many application start this start with this form of the linear momentum balance                

equation and easy to remember. 

Now, how does the significance change how or how do we interpret this equation? The left                

hand side if you read it, first you have density which is mass per unit volume and then that is                    

multiplied by of course, we know acceleration of a material particle. Remember, what all  Dt
Dvx              

significance of substance derivative the derivative following a fluid particle fluid particle. 

So, represents acceleration of a material particle of course, material fluid particle what is Dt
Dvx               

there in the right hand side forces acting on the fluid particle. What is this nothing, but                 

Newton’s second law, but for a continuum fluid particle of course. So, the left hand side                

interpretation when we wrote the first time was, we have a small volume there is some rate of                  

change of momentum or momentum entering and leaving etcetera. Now, the left hand side              

interpretation is different you are following a fluid particle and it represents mass into              

acceleration of that fluid particle of course, divided by volume density into acceleration of a               

fluid particle. 

So, left hand side has changed from a Eulerian view point to a Lagrangian view point earlier                 

it was for a fixed volume what is happening in the small region. Now, if you follow a fluid                   

particle how does it is density into acceleration change and that is nothing, but governed by                

the forces acting on the fluid particle. Now, remember all this started from our Newton               

second law of motion for a system what happens when you make the size of a system go to 0;                    

you get a fluid particle. Why? We said a system is made up of several fluid particles. 

So, if you take a system of finite size and shrink it and shrink it you will get a fluid particle                     

that is what you have got now because remember the derivation we shrank to a particular                



point. So, we started with Newton second law of motion for a system, now this equation is                 

also is for a fluid particle how do you relate when you shrink a size of a system it becomes a                     

fluid particle as you goes to zero size and that is why the left hand side now represents the                   

density into acceleration of a fluid particle. 

And, one more observation is that the left hand side are all called as the inertial terms. Now,                  

independent of how do you view the inertial terms? How did we view the inertial terms for                 

the first instance? It is based on a fixed control volume. Second time, we interpreted the                

inertial terms in terms of a moving fluid particle or a material particle. Independent of that the                 

right hand side is same there was no change in the right hand side. 

So, whether you use a inertial terms in terms of it is control volume as in terms of change of                    

momentum, momentum entering and leaving either you take that view point or you take the               

view point of a moving fluid particle, what is that? Density into its acceleration, the right                

hand side is independent of that; independent of these two viewpoints. 

Now, you look at the title linear momentum balance from a material particle view point. So,                

two different ways of writing the linear momentum balance equation. We have discussed at              

length the first viewpoint; second view point just requires a rearrangement of the left hand               

side including the continuity equation and you get this viewpoint. See, just rearrangement             

gives a different completely different viewpoint for the left hand side of course, right hand               

side is some of forces acting. 
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We will proceed to the next topic we said closure problem. To understand closure problem               

we should understand the terminology degree of freedom analysis. It is a very common              

terminology which we come across frequently in mass energy balance calculation in a             

process calculation course. 

Just as a quick revision we will have a simple example which explain what degree of freedom                 

analysis means ok. First of all, the degree of freedom analysis helps to determine whether a                

system of equations can be solved or not. In terms of a mass energy balance calculation                

suppose if you are given a problem should your degree of freedom analysis you can find out                 

whether enough information is given to you so that you can solve for the rest of the unknown                  

variable. 

Usually you will your flow sheet will have some known variables unknowns variables, you              

do a degree of freedom analysis and find out whether enough information is available to you                

so that you can solve for rest of the unknown variables. 

In fact, the Gibbs' phase rule which all of us are familiar with is , number of               c p 2f =  −  +     

components number of phases that is also an application of degree of freedom analysis and of                

course, that is in terms of intensive variables.  

Degree of freedom is defined as, 

OF umber of  variables Number of  equations D = N −   

More formally, number of unknown variables and number of independent equations.           

Equations which account for should be independent of each other which means you should              

not be able to get one equation by a linear combination of other equations. 

For our purpose any all of the equations are independent and number of variables are               

unknown variables. Let us take a simple example let us say I have a system of algebraic                 

equations  

x + y = 0  

yx + z = 3  

Now, I want to find out whether this system of equations can be solved. So, I can do a degree                    

of freedom analysis.  



The number of variables = 2, x and y 

The number of equations =2  

So, DOF = 2 2 = 0−  

Zero degrees of freedom tells you that we can solve this set of equation. 

Now, let us take another example. This can be solved now let us take another example  

x + y = 0  

yx + 2 + z = 3  

Now, if you do a degree of freedom analysis  

The number of variables = 3, x, y and z 

The number of equations =2  

So, DOF = 3 2 = 1−  

Which means that I cannot solve the system of equations unless you specify z. Now, if you                 

specify . If you replace x as some function of let us say or , some  f (xy)z =              x + y   yx   

equation then you have 2 equations and 2 unknowns then you can solve this system of                

equations. 

And, we have illustrated for the case of algebraic equations need not be algebraic. It could be                 

equations, partial differential equation. We are going to see an application for partial             

differential equations because our conservation equations are partial differential equation ok.           

So, degree of freedom analysis tells you whether system of equations can be solved or not, it                 

is defined as number of variables minus number of equations. 

We have seen two examples where one diff degree of freedom is 0, the second one this                 

degree of freedom is 1 but if you express it can be solved and that is the point          f (xy)z =            

you should note we will carry out this understand this, it becomes very easy to understand                

what we are going to discuss now next. 
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The topic which I am going to discuss now is formally called a closure problem, we will                 

understand why is it so, as we go along. So, let us write down all the equations which I have                    

derived so far.  

The total mass balance of course, a differential form  

∂t
∂(ρ) + ∂x

∂(ρv )x + ∂y
∂(ρv )y + ∂z

∂(ρv )z = 0  

Then we will write the linear momentum balance, we have to write all the three components,                

the x component, the y component and the z component  

g∂t
∂(ρv )x + ∂x

∂(ρv v )x x + ∂y
∂(ρv v )y x + ∂z

∂(ρv v )z x = ρ x − ∂x
∂p + ∂x

∂τ xx + ∂y
∂τ yx + ∂z

∂τ zx  

g∂t
∂(ρv )y + ∂x

∂(ρv v )x y + ∂y
∂(ρv v )y y + ∂z

∂(ρv v )z y = ρ y − ∂y
∂p + ∂x

∂τ xy + ∂y
∂τ yy + ∂z

∂τ zy  

g∂t
∂(ρv )z + ∂x

∂(ρv v )x z + ∂y
∂(ρv v )y z + ∂z

∂(ρv v )z z = ρ z − ∂z
∂p + ∂x

∂τ xz + ∂y
∂τ yz + ∂z

∂τ zz  

Then remember this rho is the density so, we need a equation of state we will have to include                   

that as well which comes from a thermodynamic course that equation of state could be an                

ideal gas equation or non-ideal gas equation for simplicity for example, we take a ideal gas                

equation of state. 

 e.g ideal gas of  equation ρρ = ρ (p, )T  = RT
pM  



Now, let us do a degree of freedom analysis for these set of equations. We have the total mass                   

balance, the linear momentum balance and the equation of state. Just want to repeat the               

equation of state is required because we have density and we said that then the density is                 

related to pressure and temperature and that relationship should come from a equation of              

state. 
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The equations are repeated here, we will do a degree of freedom analysis now for these set of                  

partial differential equations. So, now, let us account for the number of variables number of               

equations; when I say variables I mean the dependent variables not the independent variables              

like time, x, y, z coordinates. 

The number of independent variables we have are 

●  (1 count),ρ   

● Velocity (Velocity is a vector so 3 components)  

● Pressure (1 variable) and then  

● 9 components of the viscous stress tensor, but we proved that the cross shear              

components are same leaving as only with 6 independent viscous stress tensor            

components and that is what is written here 

So, totally independent variables = ,11 + 3 + 1 + 6 = 1   



Number of equations = 1(mass balance) + 3 (linear momentum balance) + 1 (equation of               

state) =5  

So, find the degree of freedom as 

DOF = Number of independent variables – Number of equations = 11 – 5 = 6 

We have seen the previous example that the degree of freedom should be 0 for systemic                

equation to be solved. We have 6 DOF so which means that you cannot solve. 

And, what are the 6 unknowns? They are very clear because the 6 independent components of                

viscous stress tensor are the unknowns. If you express that in terms of the usually existing                

variables, if you express that in terms of the already existing variables just like we did in the                  

last example what did we do z in terms of x and y.  

Similarly, here if you express this the components of tau let us say , etcetera in      τ         τ xx  τ yx    

terms of velocity then this degree of freedom will become 0. Not exactly velocity, you will                

see later on that we are going to express in terms of velocity gradients. 

And, we take a diversion 2 to solid mechanics to understand what velocity gradients are               

understand velocity gradients and understand what displacement gradients are and that is why             

we take a diversion 2. So, as usual any difficulty we run to solids. So, we will take a refuge in                     

solids again. 
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And, let me explain that with this journey to the Navier Stokes and where are we now and                  

where are we proceeding. To begin with we started with Newton’s second law of motion for                

system, applied the Reynolds transport theorem, derived the integral form of linear            

momentum balance, applied this for a small control volume, derived the differential form in              

the left hand side and the gravity on the right hand side. 

To understand surface forces we went to solid mechanics, understood stress factor and stress              

tensor, applied that to fluids, discussed fluids under rest to discuss hydrostatic stress,             

discussed about total stress tensor in terms of hydrostatic stress and the viscous stress tensor               

for fluids. With all this the previous lecture we applied the we completed the right hand side                 

of the linear momentum balance, now we are ready to understand this the differential form of                

linear momentum balance, what does it include? Of course, the left hand side is there and the                 

right hand side we have gravity, we have pressure and viscous stress. So, anyway going to                

solve for pressure, the viscous stresses are unknown. 

You want to relate this viscous stress to velocity actually velocity gradients, understand             

velocity gradients which understand what displacement gradients are and that is why we take              

a second diversion here, go to solid mechanics understand displacement gradient and then we              

can understand velocity gradients and that is that is where we are looks like almost we are                 

there but we need to understand furthermore ok and this problem is called the closure               

problem, that is, closure meanings meaning that expressing the components of the viscous             

stress tensor in terms of velocity gradients you close the system of equations. 
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To summarize this part we completed the differential linear momentum balance in the right              

hand side, including the surface force in the right hand side, and we included the surface                

force due to pressure and due to viscous stresses and we also discussed the viscous stress                

tensor and the convective momentum flux tensor as well. Viscous stress tensor is kind of               

known to us because analogous to tau for solids, the conductive momentum flux tensor was is                

new to us. 

We also discussed the closure problem which means that the components of viscous stress              

tensor are unknowns, they need to be expressed in terms of velocity or more precisely               

velocity gradients and to understand displacement gradients we take a diversion to solid             

mechanics. 


