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Let us continue our discussion on the Differential Linear Momentum Balance. Few classes

back we had introduction to tensor and we said tensor represents the physical quantity which

require to be represented using a magnitude in two directions. Then, we saw the stress tensor

as an example for a tensor because 9 components were there, 9 pairs of directions were there.

Objective of this next few slides is that we are going to discuss one more tensor which also

appears in the linear momentum balance equation that is the objective of the next few slides.

So, just to recall this slide is a recall slide same as what we discussed earlier, tensor

represents physical variables which have a magnitude and two directions; vectors are for

physical variables with a magnitude in one direction. Now, we represent tensor in terms of it

is components form using the equation

τ = τ
𝑥𝑥

𝑖𝑖 + τ
𝑥𝑦

𝑖𝑗 + τ
𝑥𝑧

𝑖𝑘 + τ
𝑦𝑥

𝑗𝑖 + τ
𝑦𝑦

𝑗𝑗 + τ
𝑦𝑧

𝑗𝑘 + τ
𝑧𝑥

𝑘𝑖 + τ
𝑧𝑦

𝑘𝑗 + τ
𝑧𝑧

𝑘𝑘

There are 9 components in a tensor and each component is associated with the pair of

directions and that is what these diagrams tell you.



And, we also discussed that the components change with coordinate system. Tensor as such

does not change with coordinate system. We also have that some of diagonal elements is

independent of coordinate system that is a review of tensors.

(Refer Slide Time: 02:23)

Now, the two tensors which I am going to discuss are the viscous stress tensor which is kind

of known to us, the new tensor which I am going to discuss is a convective momentum flux

tensor.

So, let us write down the 3 linear momentum balance equations only then we can discuss the

two tensors.

∂(ρ𝑣
𝑥
)

∂𝑡 +
∂(ρ𝑣

𝑥
𝑣

𝑥
)
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∂(ρ𝑣

𝑦
𝑣

𝑥
)

∂𝑦 +
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𝑧
𝑣

𝑥
)
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𝑥

− ∂𝑝
∂𝑥 +
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∂𝑥 +
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∂𝑦 +
∂τ

𝑧𝑥

∂𝑧
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𝑦
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∂𝑡 +
∂(ρ𝑣

𝑥
𝑣

𝑦
)

∂𝑥 +
∂(ρ𝑣

𝑦
𝑣

𝑦
)
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∂(ρ𝑣

𝑧
𝑣

𝑦
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𝑦
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∂𝑦 +
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𝑥𝑦

∂𝑥 +
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𝑦𝑦

∂𝑦 +
∂τ

𝑧𝑦

∂𝑧

∂(ρ𝑣
𝑧
)

∂𝑡 +
∂(ρ𝑣

𝑥
𝑣

𝑧
)

∂𝑥 +
∂(ρ𝑣

𝑦
𝑣

𝑧
)

∂𝑦 +
∂(ρ𝑣

𝑧
𝑣

𝑧
)

∂𝑧 = ρ𝑔
𝑧

− ∂𝑝
∂𝑧 +

∂τ
𝑥𝑧

∂𝑥 +
∂τ

𝑦𝑧

∂𝑦 +
∂τ

𝑧𝑧

∂𝑧

So, we written down the linear momentum balance along x direction, y direction, z direction.

Now, from this we will identify the two tensors. Let us start with something known to us.

Right hand side we have the viscous, earlier we have discussed this as stress tensor for solids

now we are discussing this as viscous stress tensor for fluids.



τ = τ
𝑥𝑥

 τ
𝑥𝑦

 τ
𝑥𝑧

 τ
𝑦𝑥

 τ
𝑦𝑦

 τ
𝑦𝑧

 τ
𝑧𝑥

 τ
𝑧𝑦

 τ
𝑧𝑧

 [ ]
Now, this component components of the stress tensor are known to you. Let us look at the

stress tensor and the right hand side. Now, we know that one row in a tensor represents the

components of stress vector acting on a particular phase. So, the first row represents the

components of stress vector acting on the x phase. Now, if you look that is a way you

represent each row; if you understand the column they represent the components of three

different stress vectors, all the components are acting along x direction.

So, if you look at column wise they represent the components of three different stress vectors

because the plane on which they are acting is different this represent with a subscript, but all

the forces are acting along the x direction.

Now, we know that in a momentum balance the right hand side, you should represent forces

along one direction that is why, the first column’s three stress tensor components, , ,τ
𝑥𝑥

τ
𝑦𝑥

τ
𝑧𝑥

are appearing in the first 3 equation, meaning that the equation in the x direction and the

second column’s three stress tensor components, , , are appearing in the yτ
𝑥𝑦

τ
𝑦𝑦

τ
𝑧𝑦

momentum balance equation and the third column’s three stress tensor components, , ,τ
𝑥𝑧

τ
𝑦𝑧

are appearing in the z momentum balance equation.τ
𝑧𝑧

So, the significance of each row is there they are components of stress vector acting on a

particular plane, but what we need is components of three different stress vectors acting on

three different planes, but all the components should be directed on x-axis. They are all

appearing in the first column and that is why, the stress tensor components appearing in the

first column are appearing in the x direction momentum balance; similarly y direction,

similarly z direction.

So, understand that if you look at the first row and the first subscript is same because of phase

is same the plane is same; second subscript is different because the directions are different

normal stresses and shear stresses x, y, z. If you look at column wise the second subscript is

same because they are all representing forces acting along x direction; first component is

different because they represent components of stress vector acting on three different phases.

Now, let us look at another tensor that is called a convective momentum flux tensor which is

on the left hand side of these set of differential equations.



𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥 𝑡𝑒𝑛𝑠𝑜𝑟,  ρ𝑣𝑣 = ρ𝑣
𝑥
𝑣

𝑥
 ρ𝑣

𝑥
𝑣

𝑦
 ρ𝑣

𝑥
𝑣

𝑧
 ρ𝑣

𝑦
𝑣

𝑥
 ρ𝑣

𝑦
𝑣

𝑦
 ρ𝑣

𝑦
𝑣

𝑧
 ρ𝑣

𝑧
𝑣

𝑥
 ρ𝑣

𝑧
𝑣

𝑦
 ρ𝑣

𝑧
𝑣

𝑧
 [ ]

We are having two vectors side by side, for me it is called the diode. So, that forms a

convective momentum flux tensor. We will not discuss diode more formulae here, but what

we will discuss is the physical significance of these 9 components of the convective

momentum flux tensor but first question is why convective, that is very clear that all these

terms are coming from that convective components on the left hand side of the linear

momentum balance. So, that is very clear. Why is it momentum flux? That is the next

question

ρ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = ρ 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑢𝑥 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥

I have written here is a general expression and of course, different directions are there. Now,

we will take the first velocity and understand the first velocity and that becomes the

volumetric flux; we have seen that velocity can be interpreted as volumetric flux multiplied

by density you get the mass flux and that is what is written here.

Now, mass flux into the second velocity is momentum flux, you know mass into velocity is

momentum so, mass flux into velocity gives you momentum flux along the direction of the

second velocity though I have not written here. So, I will repeat it each term is rho into

velocity into velocity, the first velocity we will interpret as volumetric flux.

Why do you interpret the first velocity? Remember, is associated with the mass flow in aρ 𝑣
𝑥

particular direction that is why I interpret the first velocity as volumetric flux not the second

velocity and of course, multiply by the with the first velocity meaning volumetric flux givesρ

you mass flux multiplied by the second velocity gives you momentum flux along the second

velocity direction.

Now, next why is it a tensor? Obviously, we can see that each term is associated with the pair

of directions we have , , and that is what we discussed in the next slide ah. We𝑣
𝑥
𝑣

𝑥
𝑣

𝑥
𝑣

𝑦
𝑣

𝑥
𝑣

𝑧

know that the stress tensor is a tensor because it has two directions. We will compare these

two tensors in the next slide we will also understand why this matrix is a tensor.



(Refer Slide Time: 09:35)

Viscous stress tensor as we have written earlier is represented by this 9 components same as

what I had done in the seen in the previous slide

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑠𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟,  τ = τ
𝑥𝑥

 τ
𝑥𝑦

 τ
𝑥𝑧

 τ
𝑦𝑥

 τ
𝑦𝑦

 τ
𝑦𝑧

 τ
𝑧𝑥

 τ
𝑧𝑦

 τ
𝑧𝑧

 [ ]
And then the convictive momentum flux tensor is given by these 9 components.

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥 𝑡𝑒𝑛𝑠𝑜𝑟,  ρ𝑣𝑣 = ρ𝑣
𝑥
𝑣

𝑥
 ρ𝑣

𝑥
𝑣

𝑦
 ρ𝑣

𝑥
𝑣

𝑧
 ρ𝑣

𝑦
𝑣

𝑥
 ρ𝑣

𝑦
𝑣

𝑦
 ρ𝑣

𝑦
𝑣

𝑧
 ρ𝑣

𝑧
𝑣

𝑥
 ρ𝑣

𝑧
𝑣

𝑦
 ρ𝑣

𝑧
𝑣

𝑧
 [ ]

We will compare these two tensors now. We will also understand that why this matrix

represents convictive momentum flux tensor.

How do you interpret for example, I am going to take and I am going to take forτ
𝑦𝑥

ρ𝑣
𝑦
𝑣

𝑥

case of illustration. The stress element is shown here how do we interpret because it isτ
𝑦𝑥

positive. It is viscous stress acting along x-axis second subscript is the direction so, acting

along x-axis on a positive y plane.

If you look at the top diagram this is the of course, positive y plane so, we should consider

the positive y plane here and force acting along positive x axis and represents theτ
𝑦𝑥

component of course, a stress vector acting on the positive y plane force is acting along the

positive x axis.



Now, let us interpret this then you will immediately understand why we haveρ𝑣
𝑦
𝑣

𝑥

momentum flux tensor? , to understand that we will use the control volume.ρ𝑣
𝑦
𝑣

𝑥

ρ𝑣
𝑦
𝑣

𝑥
 |

𝑦+∆𝑦
∆𝑧∆𝑥 − ρ𝑣

𝑦
𝑣

𝑥
 |

𝑦
∆𝑧∆𝑥

To recall back we said we will represent velocity as volumetric flux just like we have done

the previous slide, then with you get mass flux, multiply this with the area,ρ𝑣
𝑦

ρ𝑣
𝑦
 |

𝑦+∆𝑦
∆𝑧∆𝑥

you get the mass flow rate, multiplied by velocity , you get the𝑣
𝑥

ρ𝑣
𝑦
𝑣

𝑥
 |

𝑦+∆𝑦
∆𝑧∆𝑥

momentum in the x direction.

Of course, represents whatever is leaving and representsρ𝑣
𝑦
𝑣

𝑥
 |

𝑦+∆𝑦
∆𝑧∆𝑥 ρ𝑣

𝑦
𝑣

𝑥
 |

𝑦
∆𝑧∆𝑥

whatever is entering but what is it we should take forward is that we are having a velocity in

the y direction and that is a volumetric flux and multiply by gives mass flux multiply byρ

area gives mass flow rate into velocity gives you momentum in the x direction.

So, represents convictive flux of x momentum across y plane, why is it across y plane?ρ𝑣
𝑦
𝑣

𝑥

The mass flow associated with that is in the y direction. So, there is flow in the y direction

but momentum is in the x direction that is why I cannot just like that give one direction and

represent or discuss momentum flux, I should say what is the direction of momentum, I

should say what is the direction of the mass flow which is carrying that x momentum.

Moment I say convective flux of momentum I should include two directions; direction of the

momentum which is x in this case and the direction of the mass flow which is carrying that

momentum in this case which is the y direction. So, two directions are associated to explain

each component of the momentum flux tensor and that is why it is a tensor. In the viscous

stress tensor the two directions are one is a direction of the force direction of the force and

other is the direction of the plane. In the convective momentum flux tensor also the first

subscript represent the direction of the plane because there is a flow along the direction;

second subscript represents the direction of the momentum. So, both the tensors have two

directions, first represents the direction to the plane in both the cases; second one represent

the direction of the force in one case, second case represent the direction of the momentum

that is why we call the tensors as one is viscous stress tensor other is momentum flux tensor.



(Refer Slide Time: 14:13)

So these are shown in a more little magnified scale, not much new concepts here. The viscous

stress tensor has shown more magnified way as a 3D stress element. This slide of course,

emphasizes on the direction. We said two directions are there; direction of the normal to the

plane and then direction of the components of the stress vector or the direction of the force.

So, three directions are possible. Three directions of normal, three directions of force, gives

you nine components of the viscous stress tensor written as a tensor here or matrix.

(Refer Slide Time: 14:49)



Now, if you look at the convictive momentum flux. In the previous case, we had direction of

normal to the plane. Here also in the direction of normal to the plane, but for physical

understanding I have written as direction of fluid flow, direction of fluid flow direction of

normal to plane both are same. What is the other direction; direction of the momentum which

is determined by the second velocity. So, direction of fluid flow can have three directions

direction of momentum can have three directions and that is why we have nine components

of the convictive momentum flux tensor.

So, this clearly explains how there are two tensors one on the right hand side representing the

viscous stresses, one on the left hand side representing the convictive momentum flux; and,

that is why when we discussed earlier we are specific about the the velocity that should come

second, and the velocity that should come first. When we wrote the rate of momentum

entering and leaving we are very particular to write leaving and then entering.ρ𝑣
𝑦
𝑣

𝑥

Of course, that point of time it will tell you that we discussed this later why are we so specific

about the order of , of course, magnitude wise there is no change at all, but for𝑣
𝑦

understanding wise this way of ordering becomes very helpful for us.

Example: (Refer Slide Time: 16:29)

Just an example, to understand the convictive momentum flux tensor; the components of the

convictive momentum flux tensor. Take an example which I discussed earlier, this we

discussed when we discussed applications of differential mass balance. The geometry of this



example is that you have two plates, you have a closely spaced parallel plates and then the

bottom plate is porous and you have air entering this and it is goes radially that is what is

shown, it is a radial flow but we analyze the problem in using Cartesian coordinates. So, you

have two plates and flow entering in this direction and flowing in these two directions that is

what I shown here.

Quickly let us read, air flows into the narrow gap, of height h, between closely spaced

parallel plates through a porous surface as shown. This example gives both the integral

balance and the differential mass balance, in fact. Use a control volume, with outer surface

locate at portion x.. To show that the uniform velocity in the x direction is

𝑣
𝑥

= 𝑣
0

𝑥
ℎ

So, we use integral balance to find this and that expression is given here. Then we use a

differential balance to find expression for the velocity component in the y direction.

𝑣
𝑦

= 𝑣
0

1 − 𝑦
ℎ( )

So, this was determined by using a differential mass balance, till this point it is same as the

earlier problem. Only additional part which you have to find out this find the components of

the convective momentum flux tensor, that alone is new; the geometry, description, the

velocity components are all same as we have discussed earlier.

So, now remember the reason for choosing the example is that, we have both the velocity

components, so that you can have better understanding. Since, we have nine components we

will have four components at least, otherwise we will end up in only one component and so

on. So, and of course, depends on x, and depends on y.𝑣
𝑥

𝑣
𝑦



Solution: (Refer Slide Time: 18:39)

So, now convective momentum flux tensor, we have seen this earlier, what I have shown here

are only 4 components of the 9 components because there are only two directions here. Two

directions for fluid flow and two directions for the momentum, now as we have see in the

previous slides the 4 components are

Direction of fluid flow Direction of convective momentum

x Y

x ρ𝑣
𝑥
𝑣

𝑥
= ρ𝑣

0
2 𝑥

ℎ( )2 ρ𝑣
𝑥
𝑣

𝑦
= ρ𝑣

0
2 𝑥

ℎ( ) 1 − 𝑦
ℎ( )

y ρ𝑣
𝑦
𝑣

𝑥
= ρ𝑣

0
2 𝑥

ℎ( ) 1 − 𝑦
ℎ( ) ρ𝑣

𝑦
𝑣

𝑦
= ρ𝑣

0
2 1 − 𝑦

ℎ( )2

We are given the x component of velocity, we are given the y component of velocity just

simple substitution will give us these expressions for the momentum flux tensor.

How do you interpret this; if you look at the control volume, just ignore the z direction

because we have variation along x and y direction here. We said multiply by areaρ𝑣
𝑥
𝑣

𝑥

represents the rate of flow of momentum entering and then leaving along x direction;

similarly, rate of momentum entering and leaving along y direction.



But, we had a control volume in one phase here one phase we have talked about entering and

leaving. Now, we have reduced to a point and reduced this control volume at a small control

volume they have become a point. So, this represents momentum flux at a point. So,ρ𝑣
𝑥
𝑣

𝑥

the way in which you should imagine is you have a small region and you have at every point

there is inflow and outflow and because these two phase have come together there is no

question of writing and they just become a point value that is why we write as𝑥 𝑥 + ∆𝑥

.ρ𝑣
𝑥
𝑣

𝑥

Now, for the x component of the linear momentum balance we have , and .ρ𝑣
𝑥
𝑣

𝑥
ρ𝑣

𝑦
𝑣

𝑥

Remember the second component is and the flow is both in the x direction and y direction𝑣
𝑥

second component is along the x direction. So, what are the corresponding terms here; this

term of course, there is we do not discuss about out and in flow only at a particular point and

then these two.

What we have discussed is and , if you write the y momentum balance then theseρ𝑣
𝑥
𝑣

𝑥
ρ𝑣

𝑦
𝑣

𝑥

two terms will appear. So, these two terms will appear in the x momentum balance, if you

write the y momentum balance then these two terms will appear and there because of mass

flow in x direction, mass flow in the y direction and of course, these experiments are simple

to write just simple multiplication.

(Refer Slide Time: 21:40)



Now, just to show you where these terms appear in the linear momentum balance equation.

So, we will write down the linear momentum balance equation and identify.

∂(ρ𝑣
𝑥
)

∂𝑡 +
∂(ρ𝑣

𝑥
𝑣

𝑥
)

∂𝑥 +
∂(ρ𝑣

𝑦
𝑣

𝑥
)

∂𝑦 +
∂(ρ𝑣

𝑧
𝑣

𝑥
)

∂𝑧 = ρ𝑔
𝑥

− ∂𝑝
∂𝑥 +

∂τ
𝑥𝑥

∂𝑥 +
∂τ

𝑦𝑥

∂𝑦 +
∂τ

𝑧𝑥

∂𝑧

∂(ρ𝑣
𝑦
)

∂𝑡 +
∂(ρ𝑣

𝑥
𝑣

𝑦
)

∂𝑥 +
∂(ρ𝑣

𝑦
𝑣

𝑦
)

∂𝑦 +
∂(ρ𝑣

𝑧
𝑣

𝑦
)

∂𝑧 = ρ𝑔
𝑦

− ∂𝑝
∂𝑦 +

∂τ
𝑥𝑦

∂𝑥 +
∂τ

𝑦𝑦

∂𝑦 +
∂τ

𝑧𝑦

∂𝑧

∂(ρ𝑣
𝑧
)

∂𝑡 +
∂(ρ𝑣

𝑥
𝑣

𝑧
)

∂𝑥 +
∂(ρ𝑣

𝑦
𝑣

𝑧
)

∂𝑦 +
∂(ρ𝑣

𝑧
𝑣

𝑧
)

∂𝑧 = ρ𝑔
𝑧

− ∂𝑝
∂𝑧 +

∂τ
𝑥𝑧

∂𝑥 +
∂τ

𝑦𝑧

∂𝑦 +
∂τ

𝑧𝑧

∂𝑧


