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We will take the lead from this characteristic feature of fluids. Fluids cannot resist shear

stress under static condition. So, in a static fluid there are no shear stresses.
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So, now we shortly understand what the total stress tensor means. So, let us consider Fluids at

rest; the total stress tensor for fluids was introduced as
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The total stress tensor is symmetric I have shown a symmetric total stress tensor here ok. As

we are discussed all the discussions for solids are applicable for fluids as well for total stress

tensor. So, what I shown here is a, symmetric total stress tensor or we can say, it cannot

sustain shear stress. What does it mean? This stress tensor, if you apply for a fluid at rest

under static condition, then you will not have all this shear stress components at all.

The diagonal elements are the normal stress components, the off diagonal elements are the

shear stress components. Now we said, if you have a fluid in a rest; we are considering fluid

under rest condition and because there are no shear stresses all the off diagonal elements

become 0. And so, the total stress tensor is diagonal for a fluid under static condition, under a

rest condition.

𝑇 = 𝑇
𝑥𝑥
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Now, we will find out the stress vector for a fluid under rest condition.
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We apply the Cauchy’s formula, we also seen that the Cauchy’s formula is applicable for

fluids as well in terms of total stress tensor. The total stress vector is equal to; for our

understanding matrix multiplication with total stress tensor. So, this is the components of the

unit normal vector and then these are the components of the stress tensor, it is a matrix only

the diagonal components are there.

So, simple matrix multiplication will give us the stress vector as,

𝑡
𝑛

= 𝑛
𝑥
𝑇

𝑥𝑥
𝑖 + 𝑛

𝑦
𝑇

𝑦𝑦
𝑗 + 𝑛

𝑧
𝑇

𝑧𝑧
𝑘

So, the stress vector has been expressed in terms of the components of the total stress tensor

and the components of the unit normal vector. So, we have got expression for total stress

vector in one way. We will now write another expression for total stress vector in another

way.

For that look at the diagram shown (in the above referred slide), which is same as what seen

for solids, you should imagine this is a fluid body and then a surface in the fluid body, just to

give a feel I made it colored as blue. But now look at the components the normal stress is 𝑇
𝑛𝑛

and the shear stresses are , and then directions n, S1, S2 are shown. The stress vector𝑇
𝑛𝑆
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𝑇
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2

we resolved along the normal and the tangential directions.

Now, this applicable for a fluid under moving condition; now imagine this to be a surface in a

fluid under static condition, there are no shear stresses at all. So , are not there. So,𝑇
𝑛𝑆

1

𝑇
𝑛𝑆

2

this normal direction and the stress vector or at angle to each other because of the presence of

shear stress components; because this stress vector has three components 2 shear stress and 1

normal stress component, it is at an angle to the normal vector.

Now, suppose if this shear stresses are absent which is the present case; then what will

happen, the stress vector will be parallel to the normal vector. There are no shear stress

components at all, only one component and that will be parallel to the n vector. That is what

we are going to state now, stress vector is parallel to the normal vector. And then when a

vector is parallel to another vector how do we write, the stress vector in this case is parallel to

the normal vector just a scalar multiple of the other vector.
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So, if a vector is parallel to another vector, we express that as scalar multiple. So, this is our

expression for stress vector using the second method. Like to summarize this slide again, we

made a physical observation based on experimental observation; experimental observation

tells you that a fluid under static condition there are no shear stresses. Experimental

observation is same that we are used in two different ways; the first implication of the

absence of shear stress is that, the stress tensor is diagonal, because of that we got the first

expression for stress vector.

Once again going back to the same experimental observation, that there are no shear stresses

in a static fluid; we infer that the stress vector normal should be parallel to each other and

hence write the second expression for stress vector; same physical observation, experimental

observation resulting in two different expressions, two equivalent expressions for stress

vector, both should be same we will equate it.
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That is what we going to see here, the first expression is,
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The first equation is based on the fact that the stress tensor becomes diagonal; second is based

on the fact that the stress vector becomes parallel to the normal vector. Now component wise

they should be equal to each other, what does it mean,
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Now, comparing the components of the stress vector, stress vector is same two different ways

of expressing.
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𝑥𝑥

= 𝑇
𝑦𝑦

= 𝑇
𝑧𝑧

= λ

What is a physical equivalence of this statement? If you have a static fluid; first observation

is that there are only normal stresses. If there are only normal stresses, all the normal stresses

should be equal to each other that is a conclusion and that whatever number or scalar we

calling it as . I will repeat in a fluid under static condition there are only normal stresses, ifλ

there are only normal stresses all of them should be same we are calling it as .λ

Now, of course, other way of putting it is all diagonal components are equal, so now, our

stress tensor becomes diagonal.

𝑇 = λ 0 0 0 λ 0 0 0 λ [ ]

So, if you have only normal stresses, only if all of them are equal then it will be under

equilibrium and force balance will be valid, that is other way of interpreting this.

Now, the normal stress in a fluid at rest is the pressure and so,

𝑇
𝑥𝑥

= 𝑇
𝑦𝑦

= 𝑇
𝑧𝑧

= λ =− 𝑝

Then this p is the thermodynamic pressure, exactly what you have come across in

thermodynamic course, no difference at all. We have seen pressure is compressive and so, it

is a negative p.

So now, we said that all the normal stresses are equal; in a fluid under static condition,

normal stress is pressure, because pressure is compressive it is a negative p. p is the

thermodynamics pressure, which we come across in thermodynamic course. All the diagonal



components are same and they are negative of pressure. So, if you write the total stress tensor

in terms of pressure, it becomes

𝑇 = − 𝑝 0 0 0 − 𝑝 0 0 0 − 𝑝 [ ]

Now let us look at the stress element; how do you represent stress element? We have seen a

more general representation of stress element, here the components are only the normal

stresses. So, if you want to represent this as stress element, if you take the right hand side

face remember it is negative p; which means that on a positive face your force should be

along the negative x axis. And then on a negative face because it is minus p your force should

be along positive x axis; similarly along y axis and then similarly along z axis.

On all the positive faces, the force should be along the negative axis direction. So, the

summary of this slide is, the stress tensor is diagonal for fluids at rest and diagonal elements

are negative of pressure.
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Now, let us proceed further, look at one more characteristic; the stress vector was along the

normal. So, we represented as

𝑡
𝑛

= λ𝑛 = λ𝑛
𝑥
𝑖 + λ𝑛

𝑦
𝑗 + λ𝑛

𝑧
𝑘

This expression we have seen already now, let us find out, the magnitude of the stress vector



𝑡
𝑛| | = λ𝑛

𝑥( )2 + λ𝑛
𝑦( )2 + λ𝑛

𝑧( )2 = λ =− 𝑝

So, the magnitude of the stress vector is the pressure of course, with the negative sign; but

what is observation? we are saying that imagine this to be a fluid object have a surface in the

fluid, what we are saying, the stress under rest condition. We are saying that, there were stress

vector acting and then the magnitude of the stress vector is the pressure of course, the

negative sign.

But what is more important observation is that, right hand side does not depend on n, does

not depend on the components nx, ny, nz. What is it mean? whatever be the angle of the

surface, their magnitude of the stress vector is the pressure which is same and is independent

of the orientation of this surface. So, the pressure acting is same for every plane passing

through a given point.

That is what we said, the n represents the direction of the plane. So, every plane the or if you

take a plane like this whatever be the orientation of the plane at the same point; of course,

imagine a very small plane, the pressure is same.

Now, that statement is the Pascal’s law. At the point pressure is same in all directions, that is

what we have stated there; the magnitude of stress vector is a pressure and that is independent

of the plane,. So, pressure is independent of direction and that is the Pascal’s law. And that is

why, pressure is a scalar. of course we know that any quantity is independent of direction is a

scalar; like density, temperature etcetera. Only difficulty is, little bit difficult to understand

pressure is a scalar; reason is very simple why, that I will explain now.

Pressure is force per area, stress vector is force per area, stress tensor is force per area; so if

you go by units, looks little confusing. But now pressure is a scalar; why?, as we have seen

now, we have proved that pressure at a point is independent of direction. Any quantity, so

independent of direction only which is can be characterized by magnitude alone it is a scalar,

that is why pressure scalar though the units are force per area.

Let us go to the stress vector, the force acting on a given plane, because of plane it is

specified and it is a force, it is a vector. There is a direction, because the direction of the area

is given, you need only the direction of the force which is direction of the stress vector and

because you require only one direction of course, magnitude is there, it is a vector.



Now, go to stress tensor; what does it say, at the same point you can have any number of

planes, stress tensor will give you information about stress vector acting on all the planes. So,

we are not specifying any plane at all there, that is why it is a stress tensor.

So, we are not specifying any direction at all for the plane that is why you have direction

for force, direction for the plane as well resulting in a stress tensor. This could be or in ourτ

case it could be the T total stress tensor also; just want to illustrate that though the units are

same it could be a scalar as pressure, vector as stress vector could be a tensor as or T.τ
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Just want to compare the way in which Pascal’s law is discussed in fluid mechanics book and

then what we have discussed. It may so appear that, what we have discussed is different from

what in the books, just want to show that both are same. We have taken this picture from this

book Cengel, what they show is a wedge shaped element and they show pressure acting on

the phases and then look at the any surface incline at an angle and they show the pressure

acting on that phase. To begin with nomenclature P1, P2, P3 etcetera has given.

This is what is this wedge shaped element is nothing, but our 2D version of our tetrahedron;

because we discuss under 3D condition we took tetrahedron. Look at one projection of that

and then another plane attached to that, this is a plane at an angle with the horizontal. Weθ

also said, we have a plane at any angle, so both are equivalent that is done for 2D, 2

dimensional case we have done 3 dimensional case. What are the other differences? Pascal’s

laws derived in your let us say second chapter fluid mechanics book and a fluid mechanics



book slowly gradually develops from fluid under rest condition, then without viscous forces,

with viscous forces etcetera.

So, because it is considering fluid under static condition, they do not talk about a general

stress; they talk about only pressure as the only normal stress. Because we talked about a

general stress, we said more physically, fluid under static condition has only pressure as the

normal stress. So, in more specific and then discuss about only pressure to, we are more

general saying as , , ; but finally, of course, we have also came down to pressure𝑇
𝑥𝑥

𝑇
𝑦𝑦

𝑇
𝑧𝑧

only. Then what they do here is write a force balance in the x direction, here in this case x

direction x direction, etcetera; that is what we also did, what is our Cauchy’s law, a force

balance in the respective direction.

Of course, so both are analogous, I was little more general than what is given there. That is

the scope of that chapter at that level of entry into fluid mechanics book, it is an simpler way.

But because we are discussing and then taking concepts from solid mechanics we are more

general discussion, conceptually both are same. They also finally prove that

𝑝
1

= 𝑝
2

Similarly, we also proved

𝑇
𝑥

= 𝑇
𝑦

Finally, they prove that p3 is same, we also proved that the magnitude of stress vector is

pressure. So, eventually it is all equivalent to each other.
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Then now, we are in a position to express total stress tensor for fluids. We have first

introduced total stress tensor and I just made a statement that; a fluid under static condition

has some stress, when it is flowing it has some additional stress. Fluid under static condition

whatever stress it has what we have discussed now, we have to just add the additional stress.

Total stress tensor has fluid static and fluid dynamic contributions. Now, you are in a better

position to understand this statement and then should reduce correctly under static condition.

We have two components; so one should vanish when the fluid is not moving and only the

static component should remain, that should be taken into consideration.

So, the how do we represent the total stress tensor

𝑇 =− 𝑝𝐼 + τ

Total stress = Hydrostatic (pressure) stress + Viscous stress

The total stress in a moving fluid has two components; one the component because of the

static condition which we call as hydrostatic stress, other additional stresses developed

because of fluid in motion which are called as viscous stresses; why viscous stress, you will

understand later; right now we will coin a name called viscous stress.

So, the total stress in a fluid has two components, just under static condition it has some

stress; we have seen that at is purely due to pressure. That is why I have written as



hydrostatic stress in bracket I have written pressure. Now, when it starts moving additional

stresses develop which are the viscous stresses; the for fluids and the in solids are exactlyτ τ

analogous.

Only the T was different, now we understand why we introduced T when we came to fluids;

T has two components, hydrostatic and viscous. The in fluids and the in solids analogues Iτ τ

mean how is it, you will understand as we go along; but that is why same nomenclature is

used, physical significance everything is same. But T has one extra additional component;

that is why, moment we enter fluids first line I said let us introduced total stress in fluids.

𝑇 =− 𝑝𝐼 + τ
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And if you sum up term by term.
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So, the off diagonal elements there is no change, only along the diagonal elements; we have

seen that under static condition the stress tensor becomes diagonal. So, to the diagonal

elements minus p gets added. So to, just in one line if you want to summarize whatever we

discussed now, this stress tensor is analogous to solids number 1; number 2 to the diagonal

elements minus p gets added, if you want to just mathematically say; we all discuss the

physics very in detail. Bottom line take one point from this is that slide is that, 2 components,

some stress acts when the fluid is under rest, when it flows some additional stresses are there.
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So, now, we can understand that highlighted portion. We were in third box, having derived

the left hand side of differential linear momentum balance, body force in the right hand side.

And then for surface forces on the right hand side we took a diversion to solid mechanics;

discussed about stress vector, stress tensor.

Now, whatever highlight becomes very clear to you now, based on the discussion we are so

far. We came to back to fluids, first discussed fluid at rest. And then now look at the term

here it says, total stress tensor in terms of pressure and then stress tensor that is the summary

of what I discussed under fluids. Now we have to go back to our right hand side of linear

momentum balance and complete it.
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So, just before that let us summarize what I discussed so far; total stress tensor was

introduced for case of fluids, same results of solid mechanics are applicable; we discuss the

difference between solids versus fluids, specifically in terms of response to shear stress. And

the most important difference is that, no shear stress in a fluid under rest condition which

leads to that total stress tensor is diagonal, also leads to that the stress vector is parallel to the

normal vector and only normal stresses are present and they are nothing but the

thermodynamic pressure, negative because they are compressive, pressure is compressive.

So, based on that, we are able to write expression for total stress and fluids. Here we just

introduce, here only we are able to express that. Total stress has two components, hydrostatic

stress plus viscous stress and one stress acts when the fluid is in rest condition; additional

stress acts when the fluid is flowing.


