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Integral linear momentum balance: Examples – Part 3

Example: (Refer Slide Time: 00:13)

In this example, we are going to look at another form of surface force, namely frictional force

that is the main object of this example. In addition to that, we are going to consider the

example, where they have compressible flow.

Let us read the example. Air flows steadily between two cross-sections in a long straight

portion of 10 centimeters inside diameter pipe as indicated. Simple pipe, no uniform

cross-section no change in direction nothing. We want to focus air only on the frictional

force. So, geometry has been kept very simple, just a straight pipe, and then the diameter is

given to us. The uniformly distributed pressure and temperature; At the inlet, the pressure

distribution is uniform. Temperatures also uniform along the cross-section. So, uniformly

distributed pressure and temperature at section 1, similarly at the outlet also. And section 1

and 2 are given = 700 kilopascals, roughly about 7 times or above atmospheric pressure𝑝
1

and temperature roughly about ambient 300 Kelvin. At the exit, you have roughly about



atmospheric pressure, = 125 kilopascals and a lower temperature less than 0 degree𝑝
2

centigrade (250 Kelvin).

Now, the average velocity at section 2 is 300 m/s and we are asked to find out the frictional

force exerted by the pipe wall on the airflow between these 2 sections, as I told you that

subject of this example. And then, we are also asked to assume uniform velocity distributions

at section 1 and 2; in fact, that we have been assuming our all the examples.

Solution: (Refer Slide Time: 02:14)

Let us say proceed with the control volume. So, the control volume is shown along with the

control surface.

Given data are:

= 700 ; ; kPa; K; m/s;𝑝
1

𝑘𝑃𝑎 𝑇
1

= 300 𝐾 𝑝
2

= 125 𝑇
2

= 250 𝑣
2

= 300 𝑀
𝑎𝑖𝑟

= 29

Now, let us write the integral total mass balance, to begin with, because we are given the exit

velocity. We need to find out the inlet velocity, something similar to what I have done in the

previous example.

𝑚
𝑖𝑛

˙ = 𝑚
𝑜𝑢𝑡
˙

There is only 1 inlet 1 outlet and we have seen that this expression of no use. It has to be

expressed in terms of density velocity and area.



ρ𝑣
1
𝐴

1
= ρ𝑣

2
𝐴

2

I think previously I have discussed the utility of these 2 expressions. One in terms of mass

flow rate straightaway; the other in terms of density velocity and area. This is a nice example,

where the real utility of the second expressions becomes very obedient. Though both tell us

the conservation of mass, the second expression is more useful because the beauty of this

example is that these are all measurable variables. We have a pressure sensor to measure

pressure, let say thermocouple to measure temperature or thermometer. So, these are all

measured values. Similarly, measure velocity, and the variables are given straight away in

terms of what you would practically measure.

So, now let us evaluate the density, we assume air to behave as an ideal gas

ρ
1

=
𝑝

1
𝑀

𝑎𝑖𝑟

𝑅𝑇
1

= 8. 14 𝑘𝑔

𝑚3

We substituted the pressure and the temperature at the inlet, the molecular weight of air and

got a density.

ρ
2

=
𝑝

2
𝑀

𝑎𝑖𝑟

𝑅𝑇
2

= 1. 74 𝑘𝑔

𝑚3

Similarly, we evaluate the density of air at the exit, use the pressure at the exit remember we

should use absolute pressure, those pressures are given not the gauge pressure. The

temperature and the density slightly above that of atmospheric air.

Now, we use the integral mass balance and evaluate the inlet velocity

𝑣
1

=
ρ

2
𝑣

2

ρ
1

= 64. 1 𝑚
𝑠

So, there is a huge acceleration happening over the section accelerating from 64 m/s to 300

m/s. You will see why I mentioned that shortly know.



(Refer Slide Time: 05:20)

So, now we can proceed further, whatever values be calculated or brought in here, now

whatever is required for the calculation of the frictional force.

= 700 ; kPa; m/s; m/s; kg/m3 ;𝑝
1

𝑃𝑎 𝑝
2

= 125 𝑣
2

= 300 𝑣
1

= 64. 1 ρ
1

= 8. 14 ρ
2

= 1. 74

kg/m3 ; m𝐷 = 0. 1

So, let us write the integral momentum balance along the x-direction with the convicted term

on the left-hand side body in surface force on the right-hand side.

𝐶𝑆

 

∫ ρ𝑣
𝑥
 𝑣. 𝑛 𝑑𝐴 = 𝐹

𝐵
𝑥

+ 𝐹
𝑆

𝑥

Now, along the x-direction, there is a contribution to the convective momentum both at the

inlet and at the outlet. So, CS has been split into CS1 and CS2; control surface 1 and control

surface 2

𝐶𝑆

 

∫ ρ𝑣
𝑥
 𝑣. 𝑛 𝑑𝐴 =

𝐶𝑆
1

 

∫ ρ𝑣
𝑥
 𝑣. 𝑛 𝑑𝐴 +

𝐶𝑆
2

 

∫ ρ𝑣
𝑥
 𝑣. 𝑛 𝑑𝐴

𝐶𝑆

 

∫ ρ𝑣
𝑥
 𝑣. 𝑛 𝑑𝐴 =  − ρ𝑣

1
2𝐴

1
+ ρ𝑣

2
2𝐴

2



Now, there is no body force along the x-direction. Coming to surface force, so far we have

been taking the reaction force as positive along the x-axis or y-axis. In this case, we are asked

to find out what is the force exerted by the pipe wall on the fluid. Intuitively, we can feel that

fluid is flowing along the positive x-axis. So, the frictional force exerted by the pipe wall on

the fluid flow will be towards the negative x-axis.

So, to begin with, we have taken along the negative x-axis, nothing wrong in taking along the

positive x-axis and concluding it as an opposite direction as we have done. But just to get

practice to do another way also I have done this; another reason is the book from which I am

taken Munson et al follow this. So, that will be easy for you to follow the book ok, that is

why I have taken Rx along negative x-axes.

Now, also you should know that the pipe wall shown has contact between the fluid and the

surrounding pipe so that this reaction force in this case frictional force represents the friction

between the fluid surface and the control volume. So, Rx is the frictional force exerted by the

pipe wall on the airflow and intuitively assumed along the negative x-axis.

𝐹
𝑆

𝑥

= 𝑝
1
𝐴

1
− 𝑝

2
𝐴

2
− 𝑅

𝑥

Now, the surface force we have a contribution from pressure also because the pressure at inlet

and outlet are different.

So, now let us substitute in the integral balance, the convective momentum terms on the

left-hand side and the surface forces on the right-hand side.

𝐶𝑆

 

∫ ρ𝑣
𝑥
 𝑣. 𝑛 𝑑𝐴 = 𝐹

𝐵
𝑥

+ 𝐹
𝑆

𝑥

− ρ𝑣
1
2𝐴

1
+ ρ𝑣

2
2𝐴

2
= 𝑝

1
𝐴

1
− 𝑝

2
𝐴

2
− 𝑅

𝑥

Rearrange for the frictional force Rx

𝑅
𝑥

= ρ𝑣
1
2 + ρ𝑣

2
2( )𝐴 + (𝑝

1
− 𝑝

2
)𝐴

Now, this frictional force has two components; one because of the convective momentum and

one because of the pressure change. So, we can work in terms of either the total pressure or

the gauge pressure, the atmospheric pressure cancels out.



So, if we substitute all the values, we get the frictional force as

𝑅
𝑥

=− 967 + 4516 = 3549 𝑁

(Refer Slide Time: 10:11)

Now, let us interpret this and also compare compressible flow versus incompressible flow.

So, let us rewrite what arrived in the previous slide.

𝑅
𝑥

= ρ𝑣
1
2 + ρ𝑣

2
2( )𝐴 + (𝑝

1
− 𝑝

2
)𝐴

𝑅
𝑥

=− 967 + 4516 = 3549 𝑁

Rx has two components; one because of convective momentum and one because of the

change in pressure. Now, how do you interpret this?

Now, here we had compressible flow. Now, let us interpret it differently. The pressure

difference is roughly about 4500 which has to be supplied by a compressor or any driving

equipment. This pressure difference is balance by two components, one is the frictional force

which is the major component here which is about 3500, and then, another component is the

increase in fluid momentum that is why we are emphasizing that there is huge acceleration in

this example; accelerating from about 60 to 300 m/s. So, the pressure drop, which we have to

supply the pressure difference we have to supply has to overcome this frictional force and

also the increase in fluid momentum. That is about 3500; that is about 1000.



Now, suppose if this flow were an incompressible flow, for example, just water is flowing

then the density would hardly change, velocity would hardly change in which case what will

happen the pressure drops we have to supply will have to overcome only the frictional force

alone. And no change in fluid momentum or no acceleration because the density all almost

remains the same.

So, this is a good example. We have not worked out numerically this case, but qualitatively

also. We are discussing how the pressure drop that we supply gets split into its components

based on whether the flow is compressible or incompressible.

So, what we are concluding here is the apportionment of the pressure difference depends on

whether the flow is compressible or incompressible. If it is compressible, two components

contribute to the frictional force and the acceleration of the fluid. If it is incompressible, only

the frictional force has to be overcome.

One more conclusion is that remember that we are measuring the pressure so by measuring

the pressure drop, we are able to calculate the frictional force using the integral linear

momentum balance. Our measurement is on the pressure on pressure drop, we use a balanced

equation and we estimated the frictional force.

(Refer Slide Time: 13:15)

So, let us summarize this part on integral linear momentum balance,



● we first derive the integral linear momentum balance equation, the starting point was

the Law of physics. This is Newton’s second law of motion and then, we apply

Reynolds’s transport theorem to arrive at the integral linear momentum balance and

then, on the right-hand side, we have on the forces acting on the contents of the

control volume. We classified and discussed the two types of forces namely body and

surface forces. Looked at their characteristics also examples. For example,

gravitational force or the body force, pressure, surface force.

● And we looked at the application of the integral linear momentum balance equation.

The applications were on the plate, the weighing balance elbow and pipe different

geometries, different conditions. Now, in all the examples we were interested in

calculating the force that is the prime country of interest, but different kinds of forces

namely reaction force in all three cases and frictional force is the last case.


