
Continuum Mechanics And Transport Phenomena 
Prof. T. Renganathan 

Department of Chemical Engineering 
Indian Institute of Technology, Madras 

 
Lecture – 29 

Integral linear momentum balance Part 1 
. 

(Refer Slide Time: 00:14) 

 

So, we have discussed the Reynolds transport theorem as part of the fundamental concepts              

and used that in deriving the integral form of total mass balance and then, used that integral                 

balance to derive the differential form of the total mass balance. 

Now, we are proceeding towards deriving another conservation equation, we say a major             

conservation equation of importance namely the linear momentum balance and first, we will             

just like the case of mass balance, we will derive the integral linear momentum balance and                

look at applications of the integral balance. 
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Now, this is the outline. Start with the law of physics and derive the integral linear                

momentum balance using the Reynolds transport theorem and look at applications. I think the              

sequence is obvious based on our mass balance lectures. 
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So, the applications which we will be able to solve at the end of this integral linear                 

momentum balance equation.  



● The first example would be if you have a plate and then, water impinges on that and                 

then you are holding this plate what is the force you should supply so that you hold                 

the plate.  

● The second example is a nice example. Let us say you have a tank and then, it has                  

water in it. Suppose if you have balance and it gives you the weight, then you know                 

the weight will reflect the mass of the tank and the mass of water in it. But now                  

suppose if you have flow also and the weight should indicate the effect of flow as well                 

or the momentum as well that is what we will see; how do you for me do that.  

● The third example is where you have an elbow which is the usual pipe joint and then,                 

water flows in and flows out or air flows in and flows out and then, if you leave it                   

without any support the elbow will just start moving; what is the force you should               

supply so that you hold the elbow.  

● The last example will be the flow of air or water through a pipe and there is loss in                   

pressure because of friction between the fluid flow and the wall. So, how do you               

evaluate that frictional loss or frictional force based on measurement of the pressure             

drop other variables.  

So, those are applications which we will be seeing at the end of this integral balance equation. 
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Of course, these are the experimental setups that are familiar and the control volumes are the                

same, but what is it we are going to account for is now different. We are going to account for                    



the momentum in, momentum out, forces acting etcetera. So, we keep seeing the same              

control volume, but the balance for which we do that property differs, earlier it was total                

mass. Now, it is going to be linear momentum associated forces be it the flow through a pipe                  

or this flow through the tank.  
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Now, so, let us start deriving the integral form of the linear momentum balance equation. So,                

within the scope of this course when I say momentum, it means linear momentum. You can                

derive conservation equations for angular momentum. We are not going to discuss that. We              

may use it in a very simplified form later on. So when I say momentum, it means linear                  

momentum. So, we will stick to that convention and use the word momentum.  

So, start with the law of physics. In the earlier case of the case of total mass, it was                   

conservation of mass; mass conservation principle. Mass of system was constant that is the              

law of physics. In this case, the law of physics is Newton’s II law of motion. So, that is the                    

starting point for deriving the integral form. Now, what does it state?  

The time rate of change of momentum of a system is equal to the sum of all the forces acting                    

on the system. So, of course, we should make note that the law is written for a system. Now,                   

this Newton’s II law of motion is not new to you, it is very well known to you; the only                    

difference is that you would have written this Newton’s II law for a solid object, well define                 

mass etcetera. 



Now, we are going to write an expression for Newton’s II law for a system made of fluid that                   

is how we should view it. So, let us do that. Now when we derived the Reynolds transport                  

theorem, we express the rate of change of an extensive property of the system in terms of the                  

rate of change of integral.  

B b dVd
dt sys = d

dt ∫
 

sys
ρ  

We express this extensive property in terms of integral; where,  

pmentum vB = M = m  

And,  

omentum per unit massb = M = v  

That is a distinction in the earlier case for the case of total mass balance ; and . In              B = m   b = 1   

the case of momentum, balance B represents momentum. So, the intensive properties per unit              

mass or momentum per unit mass which is the velocity vector. You should note that both the                 

quantities are vectorial quantities; both the momentum and the velocities are vectorial            

quantities. 

Now, I like to mention this velocity can be viewed in different ways. Of course, one is of                  

course, as such velocity, and in the derivation of mass balance, we saw that the velocity can                 

be interpreted as a volumetric flux. Now, we are interpreting the velocity vector as a               

momentum per unit mass. So, when velocity can be given different physical significances;             

one is velocity as such the volumetric flux and now momentum per unit mass. 

Now, how do we write the momentum of the system? Now, this diagram is well known to us                  

(above slide image), keep showing this diagram because a very good representation of system              

and control volume moment you look at this diagram the gas inside and then a part of the gas                   

going out; quickly gives a good understanding of system and control volume. So, now how               

do we express the momentum of the system? 

So, as usual, we will divide the system into smaller and smaller volumes, each of volume                

 and each has its own density, which gives the mass of each element.V∆ i   

ρ ∆V v dV  (mv)sys = ∑
 

i
vi i i = ∫

 

sys
ρ  



Now, earlier we stopped at that because we are interested in the mass balance. Now, we are                 

interested in the momentum balance. So, multiply by velocities each region can have a              

velocity, please note that is a velocity is a vector here. So, each region can have a velocity.                  

So, we split it into volumes multiplied by and then, multiplied by the velocity you      V∆ i    ρi         

get the total momentum of the system. 

Now, as usual, you want to express that in terms of an integral. So, we consider many such                  

small volumes and as the number goes up, each volume tends to 0; then, you can approximate                 

the summation in terms of an integral. So, the integrated over the system gives you         v dVρ        

the momentum of the system. The total momentum of the system is expressed in terms of an                 

integral . And, this is written in line with the same expression on the left hand side v dVρ                 

mass into velocity written in terms of a density, velocity etcetera. In the case of solid                

particles, you can proceed in terms of writing mass itself but now for a case of fluid the                  

relevant property is density and that is how you are expressed in terms of density. Now, apart                 

from that, we allow also for the density variation within the system, velocity variation within               

the system and hence you have integral that is how we should interpret integral .v dVρ  

So, now let us state the Law of physics the Newton’s II law of motion for a system made of                    

fluid.  

(mv) v dVd
dt sys = d

dt ∫
 

sys
ρ = ∑

 

 
F sys  

So, left hand side, we have the rate of change of momentum of the system as we explained                  

just now express this momentum of the system in terms of this integral expression. So, the                

left hand side now represents the rate of change of momentum of the system and according to                 

Newton’s II law of motion, it is equal to the sum of all the forces acting on the system. So,                    

this expression is Newton’s II law of motion for a system made of fluid. 
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And of course, the first observation on this equation is that it is a vectorial equation.  

v dVd
dt ∫

 

sys
ρ = ∑

 

 
F sys  

On the left hand side, we have vector, the right hand side of the force vector that is the first       v               

observation. This vectorial nature of the equation distinguishes this equation from all other             

equations. When I say all other equations, we have seen a similar law of physics for the total                  

mass balance that was a scalar equation. We are going to come across similar law of physics                 

for energy balance and species balance; all those are scalar equations. This equation law of               

physics for momentum is a vectorial equation and that has to be kept in mind because it is a                   

vectorial equation we work in terms of components of that equation. 

So, let us write down the x component of the above vector equation.  

v  dVd
dt ∫

 

sys
ρ x = ∑

 

 
F x,  sys  

The velocity has three components . So, I used the x component alone. Similarly on    , v , vvx  y  z           

the right hand side, for the F vector, I take only the forces acting on the system in the                   

x-direction. In this equation, now let us say i, j and then k component or x, y, z component,                   

we are writing only the x component. So, we will derive the linear momentum balance along                

the x-direction, analogously we can do for y and z-direction. 



So, this equation tells you, the rate of change of momentum of system or x momentum or                 

momentum along x-direction and right side sum of all the forces acting on the system along                

the x-direction. So, we associate a direction with the momentum. Now, as we have done in                

the total mass balance, we will use the Reynolds transport theorem to express the left hand                

side in terms of control volume control surface.  

So, let us write down the general form of the Reynolds transport theorem, which relates the                

rate of change of property for the system to the rate of change of property for the control                  

volume and net rate at which the property leaves through the control surface.  

b dV b dV b v.n dAd
dt ∫

 

sys
ρ = d

dt ∫
 

CV
ρ + ∫

 

CS
ρ  

Now, this form is for any general property. We could take on any values for the case of mass                   

balance b = 1. Now, we have seen that b = and because working in terms of x component b           v           

= . So, we are going to apply this Reynolds transport theorem, taking b = .vx vx   

v  dV v  dV v  v.n dAd
dt ∫

 

sys
ρ x = d

dt ∫
 

CV
ρ x + ∫

 

CS
ρ x  

Now, how do you read out this equation, the rate of change of x momentum for the system,                  

the rate of change of x momentum for the control volume, and then, we have been always                 

been telling the last term term represents the net rate at which the property leaves through the                 

control surface. So, the integral term represents the net rate at which the x momentum leaves                

the control volume through the control surface. So, those are the physical interpretations for              

the three terms appearing in this equation. 

Now, we use the Reynolds transport theorem in the left hand side of the law of physics,                 

which is Newton’s II law of motion.  

v  dV v  v.n dA  d
dt ∫

 

CV
ρ x + ∫

 

CS
ρ x = (∑

 

 
F x)

sys
 

Of course, we express the left hand side in terms of control volume and control surface. Right                 

hand side is the sum sigma represents the sum of all the forces acting on the system that is                   

why I use the sigma they are representing the sum of all the forces, what are those forces we                   

will see later. So, I have taken the law of physics use the Reynolds transport theorem, and                 

express the left hand side in terms of control volume and control surface. 



So, once again, I want to emphasize that the right hand side, the force term comes from the                  

law of physics; what Reynolds transport theorem does, it replaces the left hand side which is                

in terms of system in terms of control volume and control surface. The force term does not                 

come from the Reynolds transport theorem; it comes from the law of physics. The left hand                

side term expressed in terms of control volume control surface that part only comes from the                

Reynolds transport theorem. So, now the left hand side is fine for us because it is in terms of                   

control volume control surface, right hand side is in terms of the system. 
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So, as we did for mass balance, we will express that in terms of the control volume. So, we                   

use the concept of a coincident system and control volume. So, we have seen this a few times                  

and the derivation to begin with we took the control volume and the system to be coincident                 

at each other at every instant of time; that is shown a different way in these three diagrams                  

(above slide images). The system is exactly coinciding with the control volume and then the               

system has partly left the control volume. 

So, we take the condition at time t, where the system and control volume are exactly                

coinciding with each other and that is what is shown separately. So, because of that, the                

boundary in terms of volume and surface becomes the same for both the control volume and                

the system. So, whatever forces acting on the system and forces acting on the control volume                

or the contents of control volume both are same and of course, we have our own animation                 

which shows that we take the instant, where the system and control volume coincide at time t. 



v  dV v  v.n dA  d
dt ∫

 

CV
ρ x + ∫

 

CS
ρ x = (∑

 

 
F x)

sys
 

So, now let us express this in terms of equations. So, let us carry over the integral equation                  

which I have written in the last slide. The left hand side in terms of control volume and                  

control surface and right hand side representing sum of all the forces along the x-direction is                

for a system. We consider coincident system and control volume at time t. These are               

instantaneous equations. So, at every instant of time, we consider system and control volume              

to be coincident. 

 (∑
 

 
F x)

sys
= (∑

 

 
F x)

contents of  CV
 

So, now, which means that the above equation I replace the right hand side which was in                 

terms of system in terms of the control volume. 

v  dV v  v.n dA  d
dt ∫

 

CV
ρ x + ∫

 

CS
ρ x = (∑

 

 
F x)

CV
 

So, now this is the integral form of the linear momentum balance, it is all in terms of control                   

volume control surface. The right hand side is also in terms of the control volume. We have                 

derived for the x component, similarly, we can derive for the y component and the z                

component. So, for the y component 

v  dV v  v.n dA  d
dt ∫

 

CV
ρ y + ∫

 

CS
ρ y = (∑

 

 
F y)

CV
 

And, for z component, 

v  dV v  v.n dA  d
dt ∫

 

CV
ρ z + ∫

 

CS
ρ z = (∑

 

 
F z)

CV
 

So, we should always keep in mind that it is a vectorial equation. It has three components and                  

we are in the examples to follow we will be using the x component, y component, and so on.                   

So, these, in fact, three put together form the set of equations which constitutes the integral                

form of linear momentum balance equation.  
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Now, let us look at the significance of the terms in the linear momentum balance equation.  

v  dV v  v.n dA  d
dt ∫

 

CV
ρ x + ∫

 

CS
ρ x = (∑

 

 
F x)

CV
 

For the sake of significance, we will rewrite this equation slightly differently we will write it                

as  

 ρ dV  ρ v.n dA  d
dt ∫

 

CV
vx + ∫

 

CS
vx = (∑

 

 
F x)

CV
 

● The first term is a transient term. It is the time rate of change of momentum within the                  

control volume we have here so, the time rate of change and the integral term    d
dt             

represents the momentum within the control volume. The first term represents the            

time rate of change of momentum within the control volume. 

● The second integral term represents the net rate of flow of momentum out through the               

control surface by convection. We have been always been saying that this represents             

the net rate of flow of the property. In this case, it’s the momentum out through the                 

control surface by convection, we have already seen what convection is I will explain              

shortly again.  

● On right hand side, we have the sum of external forces acting on the control volume. 



Here, I use the word momentum, but to be more specific this momentum represents the x                

momentum, analogously the force on the right hand side represents the force in the              

x-direction. So, momentum is also in the x-direction, on the left hand side whether it is the                 

accumulation term or in the flow term and the convection term. The right hand side also                

forces also x-direction, similarly y and z directions. And as I have been telling forces acting                

on the control volume to be more precise forces acting on the contents of the control volume.  

Now, we have looked at this experimental setup with a control volume, and so on. Now, our                 

control volume was something over the pipe geometry. Earlier we looked at the control              

volume and accounted for mass in mass leaving. Now, we use the control volume to do a                 

momentum balance. So, we account for the momentum entering, and the momentum leaving.  

So, if you look at the pipe and say the pipe carries water;  

● One way of saying that the pipe carries water let us say coloured water.  

● The next step would be saying that mass enters the control volume and mass leaves               

the control volume.  

● The next step would be saying that momentum enters the control volume, momentum             

leaves the control volume.  

So, what you see is, of course, an experimental setup with a pipe, but the way in which you                   

look at it differs. At the superficial level, you can say water entering water leaving, but that                 

water which is flowing carries with it mass that is what we used in the earlier case. Same                  

water carries the momentum and you are now doing a momentum balance for that. 

So, we say that that stream of water carries mass with it and that stream carries momentum                 

with it. Later on, we will extend these two energies and then, species. So, when I say                 

convection this physical picture has to be kept in your mind whatever is carried by the stream                 

because of its bulk flow. So, with this term either is called convection or by bulk flow both                  

mean the same. 
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So, now let us compare this integral total mass balance and linear momentum balance, the               

way in which they are derived, the significance are all analogous, even the terminology words               

user are all analogous; let us compare both of them. So, this is the integral mass balance.  

v  dV v  v.n dAd
dt ∫

 

CV
ρ x + ∫

 

CS
ρ x = 0  

The first term represents the time rate of change of mass within the control volume. Second                

term net rate of flow of mass out through the control surface by convection. Right hand side                 

is 0; for the case of mass balance, it was 0. 

Now, let us write down the integral linear momentum balance in the x-direction.  

v  dV v  v.n dA  d
dt ∫

 

CV
ρ x + ∫

 

CS
ρ x = (∑

 

 
F x)

CV
 

Look at the significance, you can almost write analogously time rate of change of instead of                

mass its momentum x momentum within the control volume and then, the net rate of flow of                 

momentum out through the control surface by convection. Similarly, here mass leaving            

through the control surface, momentum leaving through the control surface and right hand             

side, unlike the case of mass balance, we have external forces acting on the contents of the                 

control volume. That is, of course, the difference rather big difference unlike it was 0, here it                 

is the sum of external forces acting on the control volume. 


