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We will get started. We are discussing the conservation of mass and that we derived the                

integral total mass balance equation starting the law of physics using the Reynolds transport              

theorem. And then we looked at applications of that integral total mass balance equation              

under steady state and unsteady state conditions etcetera. Now we are going to derive the               

differential form of the total mass balance equation and also look at applications of              

differential total mass balance equation. 
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Now, what are the applications we will be looking at after sometime, we will be applying the                 

differential form total balance equation for these kinds of configurations.  

● One is our usual flow between the two parallel plates,  

● Another configuration is same parallel plates but with porous walls and then  

● The flow between the narrow gap and  

● Another interesting example linking measurements in an ocean and then  

● Of course, the last example would be once again on the transient.  

This differential form of total mass balance equation puts a restriction on the components of               

velocity. So, all these examples will revolve around finding out one velocity component,             

details of course you will know as we go along. 



(Refer Slide Time: 01:57) 

 

So, control volumes and experimental setups I think we have come across this setup a few                

times. So, I have shown only the control volume which we will be using for differential total                 

mass balance, I have not shown that for the integral balance though. So, the yellow and dash                 

lines (above slide images) represent the control volume which is now inside the equipment              

that is what is to be paid attention to either inside the tank or in the inlet pipe or in the outlet                      

pipe. So, the control volume when we say for differential balance has to be imagined a very                 

small volume we will see as we go along. 
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What is the starting point for this differential total mass balance equation, we start the integral                

total mass balance equation. So, this was obtained from the law of physics. So, which means                

that indirectly, we are obtaining the differential balance also from the law of physics only that                

we keep in mind always. Let us write the integral total mass balance equation which we                

derived  

dV  v.n dAd
dt ∫

 

CV
ρ + ∫

 

CS
ρ = 0  

Now, I am going to apply this for a small control volume inside the equipment as shown here                  

(left side in the slide image), a rectangular domain is shown. Usually of course, pipes are                

cylindrical but that will lead us to a cylindrical coordinate system and within the scope of this                 

course mostly we are going to restrict to the Cartesian coordinate system and hence pipe of                

the rectangular cross section is shown here and a small control volume as we have seen in the                  

experimental set up is also shown here. So, it is a small fixed control volume. 

So, let us write this integral total mass balance equation for a fixed control volume, we have                 

done this when we discussed the Reynolds transport theorem.  

 ρ dV  v.n dA∫
 

CV

∂
∂t  + ∫

 

CS
ρ = 0  

We bring in the differential sign inside the integral and when we do that we express that in                  

terms of partial derivative because now the density can be a function of spatial coordinates               

and time. In this case, because we are integrating after integration only time remains as the                

only independent variable and hence it was . Now it is inside the integral so density can be       d
dt            

a function of space and time hence partial derivative of course, the second term remains as it                 

such. 

Now, what is shown on right hand side is the enlarged view of this control volume. Let us see                   

how do we discuss that control volume. First attention is on the coordinate axis the horizontal                

axis is x, the vertical axis is y, and z-axis points away from the board or slide or a paper.                    

Now, so accordingly we have taken this control volume and we have taken a cuboidal control                

volume, as I discussed we are restricted into the Cartesian coordinate system hence we are               

taking a cuboidal control volume. Now the length along the x-axis is x and along the y-axis            ∆      

is y and along the z-axis is z.∆ ∆  



So, those are the dimensions of the cuboidal control volume which we are considering. So,               

we are going to apply this form of the integral mass balance equation, if I say mass it means                   

total mass as we go along ok because species mass has no confusion now until the very end                  

of the course. So, let us use for simplicity mass. So, we are going to apply this form of the                    

integral mass balance equation for the control volume shown here. 
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Now, express the two terms in an integral mass balance equation for this control volume.  

 ρ dV  v.n dA∫
 

CV

∂
∂t  + ∫

 

CS
ρ = 0  

Let us take the first term, now  

 ρ dV  ∆x∆y∆z∫
 

CV

∂
∂t  = ∂t

∂ρ
  

The density has some average value and when I say average value it is averaged over the      ρ             

entire volume and so I can take out outside the integral. Then what have left out is the        ∂t
∂ρ            

integral of dV which is nothing but the volume of this small control volume which is                

. So, what is the average value? You will understand as we go along. Right now∆x∆y∆z                 

within the small volume, I take there is a density which is an average value in the small                  

volume which means that average means it is constant over the entire region. 



So, this is the expression for the first term. Now let us consider the second term  

 v.n dA∫
 

CS
ρ  

we have seen the significance of this, let us repeat it represents the net rate of flow of total                   

mass out through the control surface by convection. This is a meaning which you have               

discussed when we derived the integral mass balance equation. Now if you look at the control                

surface, we have six faces here. What are the faces? If you take in terms of along axis you                   

have the right side face and the left side face and then you have the top face and then the                    

bottom face and then the front face and the rear face in terms of a pairwise if you take. 

Now, I will express this integral for this control volume. So, if we consider the six faces there                  

are three outlet faces and then three inlet faces.  

v A v A∑
3 out f low faces

i=1
ρi i i − ∑

3 in f low faces

i=1
ρi i i  

The outlet faces are the right side face, the top face, and the front face. So, these are the outlet                    

faces or the inflow faces the left and then the bottom and then the rear so all those are the                    

inflow faces. Obviously, here we should be expressed in terms of the densities and velocities               

and areas rather than mass flow rate that is not significance but m dot has no importance and                  

relevance here. Our expression that differential equation is going to be expressed in terms of               

the measurable properties namely density, velocity. So, we express the mass in terms of              

density velocity that is why expression what you see is for the outflow faces. Similarly          v Aρi i i       

for the inflow faces and then we have taken care of the negative sign ourselves instead of                 

leaving it to ..nv  

Now, the second point is that we know that this expression is valid when the velocity is                 

perpendicular to the face. So, for all the six faces shown here the velocity is perpendicular to                 

the respective faces, so that is why we are writing this expression.  

Thirdly remember we can write this expression when the density and velocity are uniforms              

across the area, just like we said this density is some average value in the volume. Similarly                 

what we will say is this has some average value over this face over any of the faces. So,      vρi i               

that is why we write in terms of .v Aρi i i  



I will just repeat the last two points, the way we are writing this expression implies that the                  

velocity is perpendicular to the surface area and that is what we have expressed as. We have                 

shown all the velocities perpendicular to the respective faces and the second point is that this                

expression assumes that the density and velocity uniform across a surface area and so we take                

some average value over the entire surface area be it total etcetera. Now what we will do is                  

these are in terms of rho and velocities let express in terms of further express this ok. Now let                   

us consider the faces pairwise, we will first take the inlet and outlet faces along the x-axis                 

then consider the y-axis, z-axis. 
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Let us do that now so considering faces along the x-direction. Now before proceeding that let                

us look at the coordinates, we are considering faces along the x-axis, so the left side face is an                   

inlet face and the right side face is an outlet face. Now this face the inlet face is at an x                     

location of x the outlet face because the length of the cuboid along the x as x the right hand                ∆     

side face location is x + x. So, entering the face at x the leaving face is at x + x. Now,∆ ∆  

The rate of flow of total mass entering at x = ∆y∆z(ρv )x |x  

There are two ways of interpreting this expression. Number one vx is a velocity in x-direction                

multiply by the area what is area this cross sectional area through which it enters and which is                  

this that is the area through which flows. So, the area of the faces , so velocity in y∆z∆               y∆z∆     

the x-direction multiply by area that gives you volumetric flow rate multiply by density gives               



you mass flow rate. So, we are writing expression for rate at which mass enters the control                 

surface. Now, what is the other way of interpreting? We have seen earlier that velocity               

represents volumetric flux. When you derived the integral balance we said velocity represents             

volumetric flux. So, when you multiply by density, you have mass flux of course, we know                

mass flux is mass per area per time. So, when you multiply by area you are left with mass per                    

time which is the mass flow rate.  

So, two ways of interpreting velocity into area volumetric flow rate multiply by density              

which is a mass flow rate or the volumetric flux multiply by density mass flux multiply by                 

area gives mass flow rate.  

Now coming to the nomenclature here what I have shown here is enclosed and              (ρv )x x  

subscript x. What does it mean? Now, this density and velocity are changing with the spatial                

location. We are evaluating mass entering at the left face for which x coordinate is x. So, this                  

tells you that  is evaluated at x or the value of rho and vx at the position x. So now,vρ x   

The rate of flow of total mass leaving at x + x = ∆  ∆y∆z(ρv )x |x+∆x  

So, we have written expression for whatever mass entering the control volume through the              

left face and leaving through the right face. 
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Now, write similar expressions for mass flow rate entering and leaving through the other              

faces.  

The rate of flow of total mass entering at y = ∆x∆z(ρv )y |y  

The rate of flow of total mass leaving at y +  = y∆  ∆x∆z(ρv )y |y+∆y  

So, let me just show for the z-direction 

The rate of flow of total mass entering at z = ∆x∆y(ρv )z |z  

The rate of flow of total mass leaving at z + z = ∆  ∆x∆y(ρv )z |z+∆z  

Just to like to mention, the description used here says the rate of flow of total mass, I could                   

have just told written as a mass flow rate this particular nomenclature is used. So, that later                 

on when you see similar statements for momentum balance, energy balance, species balance,             

I would say rate of flow of momentum, energy, species mass. 

So, the same words are used so that the analogy also becomes clear as we go along. Instead of                   

writing mass flow rate the words used the rate of flow of total mass, species mass,                

momentum energy etcetera. Now let us put it all together in the integral balance equation 

 ρ dV  v.n dA∫
 

CV

∂
∂t  + ∫

 

CS
ρ = 0  

Now, we have expressed this as  

 ∆x∆y∆z  ∆y∆z ∆y∆z  ∆x∆z ∆x∆z  ∆x∆y ∆x∆∂t
∂ρ

 + (ρv )x |x+∆x − (ρv )x |x + (ρv )y |y+∆y − (ρv )y |y + (ρv )z |z+∆z − (ρv )z |z

So, I like to mention that for the shake of formality and to be in line with usual books                   

derivations are done taking all the three directions into account in terms of understanding. If               

you understand for one direction most of the time you can just extend the using words like                 

analogously similarly and easily extend. But for the shake of completeness in all the lectures,               

we will see terms accounting for all the three directions. So, when you look at it may look                  

little complex, but if you focus on one particular direction; you can easily extend to other                

directions as well. So, let us proceed. 
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So let us rewrite that equation here  

 ∆x∆y∆z  ∆y∆z ∆y∆z  ∆x∆z ∆x∆z  ∆x∆y ∆x∆∂t
∂ρ

 + (ρv )x |x+∆x − (ρv )x |x + (ρv )y |y+∆y − (ρv )y |y + (ρv )z |z+∆z − (ρv )z |z

This the expression which you have seen in the last slide. Now what we will do is divide by                   

 and we get∆x∆y∆z   

∂t
∂ρ + ∆x

(ρv )| −(ρv )|x x+∆x x x + ∆y
(ρv )|  −(ρv )|y y+∆y y y + ∆z

(ρv )|  −(ρv )|z z+∆z z z = 0  

If you look at the second term alone that term represents the net rate of mass flow leaving the                   

control volume in x-direction that is the significance of that. I tell you this because you will                 

see how this term get simplified. So, that when you look at this term that is what should come                   

to your mind. It tells you that the net rate of mass flow leaving the control volume at the                   

direction and then that is per unit volume. It is not just the mass flow rate, it represents net                   

mass flow rate leaving the control volume in the x-direction. 

Because we have divided by the at this stage after dividing it represents per unit      ∆x∆y∆z           

volume, please keep this in mind so that when you are interpreting the physical significance               

of the terms the differential equation it will be helpful. So, once again to emphasize at this                 

stage of the equation they represent mass flow rate or net mass flow rate in x-direction                

etcetera. At this stage after dividing, they represent net mass flow rate, of course leaving per                

unit volume.  



Now, what is that we are going to do now remember the differential equation the form the                 

total mass balance equation which we are approaching to should be validate every point in               

the equipment, at every instant of time we are writing this equation at any instant of time and                  

for to get an equation which is valued at every point inside the equipment we shrink this                 

control volume. When I say shrink that shrink should be proportionally done. For example,              

we say that we maintained the aspect ratio, maintaining the aspect ratio, so the cuboid remain                

as a cuboid and then you shrink to the small point. 

So, the way you should imagine is you have a small point, but that small point as a cuboidal                   

shape with the same delta 0. So, that is what we write formally as 0     ∆x∆y∆z →           x∆ →   

0, 0. So, the entire control volume is made to a point, but the point also they→∆   z→∆                  

shape of a cuboid that is the point to be remembered.  

Now, sometime back we said I consider an average density in the control volume, now that                

average has now become a point value because the small control volume has become now a                

point. So, no longer average has to be told just becomes a point value. In fact, if you are more                    

formal more precise we should use a different symbol earlier and some other symbol now. 

Now it was some average value in the control volume now because we have shrunk to a   ρ                

point it just becomes a point value and that is what we are interested in. Similarly these                  vρ x  

values we said that average values across the face and those faces become now a point a                 

small face so they also become a point values.  

So, every variable in the equation has become a point value now, that is why I said you will                   

understand this average and point value little later. To begin with they were all average               

values either over the volume or over the face. Now just because they became a point the                 

entire control volume has become an infinitesimal point. 

So, every variable also becomes a point value. So now, let us see what happens 

∂t
∂ρ + ∂x

∂(ρ v )x + ∂y
∂(ρ v )y + ∂z

∂(ρ v )z = 0  

Now, what happens to the second term, of course very obvious limit 0 some function at            x→ ∆     

x + x minus at x use the derivative this case because we are considering the only variation  ∆                 

along x-direction keeping other variables constant. We result in a partial derivative similarly             



in the y-direction, similarly in z-direction of course right hand side is 0. So, this is the                 

Differential form of the total mass balance equation. 

We will put little more in a nice representation; if we use vectorial representation, we know                

that  

 v  v  i  v  j  v  kρ  = ρ x + ρ y + ρ z  

Then the gradient term vector can be expressed as  

 i j k ∇ = ∂
∂x + ∂

∂y + ∂
∂z  

So, the simplified form of the differential mass balance equation is 

.ρv∂t
∂ρ +∇ = 0  

So, this is a more short representation; a simple representation of the same differential total               

mass balance equation. Of course, here the variables are explicitly seen, but if you want to                

represent them in a short way, then their vectorial representation helps us. It has some other                

utility representing in vectorial representation which we will see towards the very end of the               

course. 


