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Let us discuss few Applications of the Integral Mass Balance Equation. In each application,              

we will highlight one aspect.  

● The first application is a mass balance for a thickener it is a typical process               

calculation example. The whole idea is to show that what you have done earlier is use                

the equation which I derived now so, that you do not think they are two different                

things.  

● The second example is a mass flow at a pipe junction case where you have multiple                

inlets, multiple outlets.  

● The third example is flow through a flat channel, our well known example. Here the               

aspect to which we pay attention is that the velocity is uniform at the inlet, but the                 

velocity is not uniform at the outlet. So, how do we take that into account and all                 

these three cases, are for steady state operating condition.  



● The fourth example will be considering the transient as well, we have a tank that went                

out how do the density varies as a function of time.  

Example:​ (Refer Slide Time: 01:38) 

 

So, first, take an example from process calculation, once again light emphasis that all the               

examples in your process calculation course where you would have done total mass balance              

fall under this category. You would have come across this term integral balance or integral               

mass balance in a process calculation course, now you would really understand what was              

really meant by the term integral balance in the process calculation course. Probably that time               

you would have not paid attention, but now you know what is really the meaning of that,                 

what is a full pledged equation after many simplifications how does it get to the equations of                 

process calculation book etcetera. We took a very specific example here,  

A thickener in a waste disposal unit of a plant removes water from wet sludge as shown in                  

figure (above slide image). So, in this figure you see 100 kg/hr of wet sludge entering, some                 

amount of water is removed per hour, the dehydrated sludge flow rate is given which is 70                 

kg/hr. So, how many kilograms per hour of water leaves a thickener per 100 kg/hr of wet                 

sludge that enters the thickener, the process is this steady state. As we discussed sometime               

back, all the values are given in terms of mass flow rates directly, not in terms of velocity                  

densities etcetera.  



Solution:​ (Refer Slide Time: 03:07) 

 

So, let us write the general integral total mass balance equation which you have derived, to                

begin with,  

dV  v.n dAd
dt ∫

 

CV
ρ + ∫

 

CS
ρ = 0  

The rate of change of mass in the control volume plus the net rate of mass leaving the control                   

volume through the control surface equal to 0. And then we simplified it, we made a lot of                  

assumptions relevant to the problem at hand.  

● First is steady state and then  

● We assumed that the velocity is perpendicular to area and then  

● Density and velocity uniform across area. 

Then we could write in terms of the mass flow rates,  

 ∑
No. of  outlets

i=1
ṁi − ∑

No. of  inlets

i=1
ṁi = 0  

So, let us apply this equation for this example, we have two outlets streams, one through                

which water leaves others through which the dehydrated sludge leaves. So,  

ṁwater + ṁDehydrated sludge − ṁwet sludge = 0  



Now, let us substitute the known values  

0 00ṁwater + 7 − 1 = 0  

So, 

0 kg/hrṁwater = 3  

This problem is very simple, the idea of showing this example is once again I repeat to relate                  

the equation which you would have started off in the process calculation course. This would               

have been your starting point in your process calculation course or straight away you would               

have written this equation. We are just showing that this equation is a very simplified version                

of the general integral total mass balance equation, of course, 30 kg per hour of water leaves                 

the thickener. 

Example:​ (Refer Slide Time: 05:32) 

 

Let us move on to the next example which is mass flow at a pipe junction. We consider the                   

steady flow in a water pipe joint shown in the diagram (above slide image), you have a pipe                  

junction with one inlet and two outlets and the cross sectional areas are given, A​1 = 0.2 m​2​, A​2                   

= 0.2 m​2 and A​3 = 0.15 m​2 and then you have a let us say a leak or a small hole through which                        

water is lost. 

In addition, fluid is lost out of a hole at location 4 (shown in the image), estimated at a rate of                     

0.05 m​3​/s because it is a leak it is a small hole, it may not be regular also. So, usually, you                     



know the volumetric flow rate through the hole that is why the volumetric flow rate is given,                 

you are not given velocity through that hole or area of that hole. If it is a well defined inlet or                     

outlet etcetera then you know the area different types of velocity. It is a small hole and the                  

small leak over it, then you do not specify in terms of area and velocity just in terms of                   

whatever is leaking out. In terms of let us say volumetric flow rate then you are given the                  

average speeds at sections 1 and 3. So, the section 1, the velocity is V​1 = 5 m/s and section 3,                     

a high velocity of V​3 = 12 m/s. It says average speed because we are not considering variation                  

across the cross sectional area. So, we just give an average value that is why it says the                  

average speed at sections 1 and 3 and we are asked to find out what is the velocity at section                    

2. 

Solution: 

To begin with, we say that water enters at section 1 and leaves at section 2 and section 3. We                    

will have to verify based on the result what we get let us see what happens. Now let us start                    

with the general form of the integral mass balance equation, we will make set of assumptions                

steady state and velocity is perpendicular to the area. 

dV  v.n dAd
dt ∫

 

CV
ρ + ∫

 

CS
ρ = 0  

So, the assumptions are  

● Across all the phases let us say a velocity and an area perpendicular to each other,                

similarly at the other inlets and outlets as well, and then  

● The density and velocity are constant across the cross sectional area which we have              

done several times.  

So, if you make these assumptions, these integral balance equation get simplified as 

v A A∑
No. of  outlets

i=1
ρi i i − ∑

No. of  inlets

i=1
ρi i = 0  

Now, unlike the previous examples, where this equation was written in terms of mass flow               

rates, the same equation now as may be written in terms of densities and velocities and areas.                 

As I told you that is more a practical way of representing the conservation equation because                

those are the measurable values measured values and this is a good example where the               



specifications are as close to as possible to the reality meaning you measure velocity measure               

area etcetera. 

(Refer Slide Time: 09:17) 

 

So, let us write down the simplified equation for this pipe junction in terms of outlets, we                 

have considered section 2 to be an outlet and section 3 to be an outlet and 4 is also an outlet                     

and there is only one inlet which is section 1. So, let us write down that because it is water I                     

kept the density to be constant.  

v A v A v A v  Aρ 2 2 + ρ 3 3 + ρ 4 4 − ρ 1 1 = 0  

So, all terms represent the mass flow rate either leaving or entering respectively. Now, we               

will substitute the values, we are given the values of A​1 = 0.2 m​2​, A​2 ​=0.2 m​2​, A​3 ​=0.15 m​2​,                    

also, we are given the velocities v​1 ​=5 m/s, v​3 ​=12 m/s but v​2 has to be found out and then we                      

are not given v​4​, A​4 etcetera. We are given the product v​4 A​4 = 0.05 m​3​/s as we have                   

mentioned a few minutes back, we are given the volumetric flow rate, not mass flow rate. 

A A A  Av2 2 + v3 3 + v4 4 − v1 1 = 0  

 x 0.2 2 x 0.15 .05  x 0.2v2 + 1 + 0 − 5 = 0  

− .25 m/sv2 = 4  

As I told you to begin with we assumed that water is leaving through this phase and so, we                   

included that in the outlet as a flow rate leaving the control volume, but now we found out                  



that v​2 is negative which means that water is entering through the inlet 1, water is also                 

entering through this surface 2 and leaving through this outlet surface 3 and of course,               

leaving through outlet hole 4, that is why the velocity v​3​ is much higher. 

So, entering at through 1 inlet at 5 m/s through the other inlet at 4.25 m/s leaving at 12 m/s                    

and their cross section area is also less so, resulting in a higher velocity. So, this is a good                   

example where if you have we work in terms of velocities areas and then apply the integral                 

mass balance equation.  

Example:​ (Refer Slide Time: 12:58) 

 

This example is to illustrate the use of velocity profile, we have so far assumed that the                 

velocity is uniform across the cross sectional area of the inlet or the outlet. Suppose, if the                 

velocity varies across the inlet or outlet how do we take that into account, remember the                

equation that we have derived can take this into consideration let us read the example, water                

enters a wide flat channel of height 2h with a uniform velocity of 2 m/s. 

This geometry is very well known to us in which is shown here (above slide image) and the                  

inlet velocity is 2 m/s remember understand the word uniform velocity. What does uniform              

velocity mean? The velocity does not vary over the height of the channel at the inlet. At the                  

channel outlet, the velocity distribution meaning velocity varies along the y-direction, along            

with the height of the channel it varies. And, we are given the velocity profile it says v​x                  

because velocity in the x-direction, and that is the function of y. 



 vx
vx,max

= 1 − ( y
h)

2
 

Velocity in the x-direction varies in the y-direction and is the maximum velocity which         vx,        

is supposed to find out where y is measured from the centerline of the channel. So, y is                  

measured so, for example, if 2h is the height of the channel, y is + h and then h that is why                  −     

we are given the position of the coordinate axis, y starts from the centerline axis. Now, we                 

asked to find out the, determine the exit centerline velocity which is maximum at the               

centerline. So, we are asked to find out what is the exit centerline velocity why is it              vx,      

centerline, when you substitute y = 0 in this equation, you get that is why centerline            vx = vx,       

velocity.  

dV  v.n dAd
dt ∫

 

CV
ρ + ∫

 

CS
ρ = 0  

Now, let us start with the most general form of the integral balance equation, we will make                 

some assumption, but not all of them  

● Steady state  

● Velocity is perpendicular to the area through the velocity either the inlet or the outlet.               

In the inlet, the velocity is uniform across the area, but still perpendicular to the area,                

in the outlet it varies across the channel height, but still, it is perpendicular. So, at the                 

inlet, it is uniform throughout it is perpendicular at the outlet it varies, but still, it is                 

perpendicular to the area.  

● So, this assumption is valid and now in the earlier examples, we took the density and                

velocity to be uniform across the area. In this example, we are taking only the density                

to be uniform across the area, we are not taking as that the velocity is also uniform                 

which is not valid at the exit. 

Now, when you simplify the equation becomes  

 v.n dA  v.n dA∫
 

CS1

ρ + ∫
 

CS2

ρ = 0  

So, now, let us split this term for the control surfaces 1 and 2, the inlet is denoted as control                    

surface 1, outlet as control surface 2. So, what I have done here, I split this control surface as                   



control surface 1 and control surface 2, and of course, right hand side is 0 wherever there is a                   

wall velocity is 0 and does not contribute.  

A yWd = d  

v 2hW v dyW− ρ in + ∫
+h

−h
ρ x (y)  = 0  

Now, let us express this for the inlet, density is a constant, now remember for inlet it is             .nv       

negative. So, we have a negative sign in the first term and minus the magnitude of velocity                 

which is and then the area (2hW). Now, let us take the second term, the second term we  vin                  

have which is written as such. Now, is positive because the flow is leaving the control ρ        .nv           

volume and what is the velocity now, it is earlier was just a constant, but now          (y)vx   vin        vx  

to be more explicit, we also mention . Now, what is the area we should take, this is the       vx  y)(             

outflow and the width is still W, but now because velocity varies along the y-direction along                

with the height I cannot take the entire to which I take a small strip of height dy. So, the area                     

of this strip disc dy W. So, that area is denoted as dA which is dy W. So, the area dA = d y W                         

because the velocity varies along with the height of the channel along the y-direction. So, I                

cannot take the entire area W 2h, I only take a strip which is of height dy so that then I                     

integrate to get cover the entire area.  

(Refer Slide Time: 20:15) 

 

Rewriting the same equation here so,  



v 2hW v dyW− ρ in + ∫
+h

−h
ρ x (y)  = 0  

Now, we are given the velocity as a function of y, W cancels out in the in this equation, and                    

let us substitute for vx as a function of y from the given velocity distribution. So,  

 vx
vx,max

= 1 − ( y
h)

2
 

2h dy− vin + ∫
+h

−h
vx,max 1[ − ( y

h)
2]  = 0  

This equation has been integrated and we get  

y hV  vx,max[ − 3
1( h2

y3 ) ]+h

−h
= 2 in  

Now, coming to the limits first we set the limits was in terms of control surface 2, now the                   

independent variable is y. So, the limits are written in terms of y and the y value varies from                   

h to +h because y = 0 represents a centerline and we substitute those limits here.−   

Now, substitute the limits and then 

hv  vx,max h[ − (− )h − [ h3

3h2 − −( h3

3h2 )]] = 2 in  

hv  vx,max  h( 3
4 ) = 2 in  

vvx,max = 2
3

in  

The maximum velocity is 1.5 times to the inlet velocity. So, inlet velocity is given as 2                vin =   

m/s, you can find out what is the maximum velocity at the exit. 

x2  m/svx,max = 2
3 = 3  

So, a good example where at one inlet it was uniform velocity, and the outlet the velocity                 

varied across the cross sectional area. By using this integral sign we have been so far telling                 

that the integral sign accounts for the variation of velocity, density. So, a good example to                

demonstrate that as well. 



Example:​ (Refer Slide Time: 23:14) 

 

The last example where our attention is to consider a case where there is transient where is a                  

unsteady state that is the focus of this example. Let us read the example, a tank of 0.06 m​3                   

volume contains air at 800 kilo Pascal absolute and 15 ​0​C. So, given volume of the tank, you                  

have given the pressure and temperature and at time t equal to 0, air begins escaping the tank                  

through a valve, and with a flow area you have given small area 65 mm​2​.  

The air passing through this valve at a speed you are given the speed so, varying at speed of                   

300 m/s because high pressure and it is a small area as well and the density of air leaving is 6                     

kg/m​3​. Determine the instantaneous rate of change of density in the tank. The rate of change                

of density tells you that the rate keeps changing because as air escapes the pressure inside                

falls and the velocity can change the density can change. So, whatever you are finding out is                 

the instantaneous rate of change of density at time t = 0, the moment you open the valve how                   

to do the density change with time that is why it says the instantaneous rate of change of                  

density in the tank moment say instantaneous you mention a time and that time is t = 0,                  

moment you open the valve what happens. 

Solution: 

dV  v.n dAd
dt ∫

 

CV
ρ + ∫

 

CS
ρ = 0  



Now, let us start once again with the most general form of the integral mass balance equation,                 

for all the earlier examples we have assumed steady state but we cannot do that here because                 

it is a transient case so that assumption is not listed, all other assumptions are listed.  

● Density is uniform inside CV 

● Velocity is perpendicular to the area and, 

● Velocity is uniform across cross section area 

Now, because we are going to consider the accumulation term that a transient term, we need                

to make another assumption that the density is uniform inside the control volume no longer               

we so far we need not mention that because that term was anywhere 0, but now that term is                   

going to contribute. So, now we should say whether density is varying within the control               

volume or it is a constant within the control volume that will enable us to take out whether                  

should we keep it inside or can I take it outside. As usual, to simplify the analysis, we will                   

say density is uniform inside the control volume. 

So, these assumptions are made depending on what aspect we were trying to focus on a                

particular problem. Now,  

(ρV ) v A Ad
dt + ∑

No. of  outlets

i=1
ρi i i − ∑

No. of  inlets

i=1
ρi i = 0  

v A  V dt
dρ + ρ1 1 1 = 0  

So, I can take the volume to be constant so that I can take this out of the derivative, and then                     

there is no inflow at all; obviously, there is only outflow. So, the last term will not contribute                  

there is no inflow, only outflow will contribute and there is only one outflow.  



(Refer Slide Time: 27:33) 

 

So, let us simplify this equation, what is required is an instantaneous rate of change of                

density. 

v A  V dt
dρ + ρ1 1 1 = 0  

−  dt
dρ = V

ρ v A1 1 1  

Let us substitute all the values 6 kg/m​3​, 300 m/s and 65 mm​2 represented in      ρ1 =    v1 =     A1 =      

terms of SI units and the volume = 0.06 m​3​. 

− − .95 /sdt
dρ = 0.06

6 x 300 x 65 x 10−6
= 1 kg

m3  

So, this gives you the rate at which density keeps changing of course, obliviously it should                

decrease because air escapes and how does it decrease roughly at the rate of 2 . So, the               /skg
m3    

density is decreasing at this rate due to the escape of air. Once again a very simple example to                   

demonstrate the unsteady state term all others are something known to us from previous              

examples.  



(Refer Slide Time: 28:51) 

 

To summarize the conservation of mass part, the total mass balance part the integral mass               

balance alone. So, the law of conservation of total mass for a system is started from that and                  

express that in terms of the integral total mass balance equation for a control volume using                

Reynolds transport theorem with that objective is derived the Reynolds transport theorem. 

We have seen the first application of Reynolds transport theorem, conservation of mass for a               

system the law of physics has been expressed in terms of a governing equation as a                

conservation equation, but in integral form for a control volume, we use Reynolds transport              

theorem for that. We will see several applications of that for other properties as well as                

momentum, energy, and then spacious mass.  

Now, the integral total mass balance equation that you have derived is more generic than the                

integral total mass balance equation used in the process calculation course. Transient,            

unsteady state term, inflow, outflow across any part of the control surface, then any angle               

between velocity and normal to the surface and of course, density, velocity can vary across               

the surface. And, looked at the application of this integral total mass balance equation,              

process calculation example, an example with multiple inlets and outlets, example           

considering velocity profile and example where we include the unsteady state term.  


