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We are discussing the Reynolds Transport Theorem and we discussed and defined the system

and control volume. The system is made up of specific fluid particles, control volume,

different fluid particles pass through and we looked at the need for the Reynolds transport

theorem, to extend the laws of physics for the conservation equations.

We derived the simplified form of the Reynolds transport theorem with few assumptions and

now we are going to derive a more general form of the Reynolds transport theorem.
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To understand in what way it is general, first let us look at the assumptions, which were used

to derive the simplified form of the Reynolds transport theorem.

● Fixed control volume, we are going to continue with that and then

● one inlet and one outlet; we are going to extend to multiple inlets multiple outlets not

alone that, we are going to extend to, the case where any part of the surface can be

inlet; any part of the surface can be an outlet.

● The properties to be uniform across the cross section, of the inlet and outlet. Now, the

properties being density, the property itself the velocity. Now we are going to allow𝑣

for variation of properties across inlets and outlets.

● Then we took the velocity, normal to the inlet and outlet phases, and now we are

going to consider velocity at any angle to inlet and outlet surfaces.

So, we are going to extend to multiple inlet outlets, allow of a variation of properties across

the inlet outlets and the velocity can be at any angle to inlet outlet surfaces.
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Let see how do we extend to a control volume with multiple inlets and outlets and this is the

old geometry which I have seen (upper right hand side image). Now, what is shown here

(down right hand side image) is the network of pipes to represent a control volume with

multiple inlets multiple outlets. You have inflow and then there is an outflow, and then there

is another inflow and this combines with this fluid, and then it leaves through the different

outlets. So, you have a network of pipes with 2 inlets and then 4 outlets. So, in general, you

can have multiple inlets and then multiple outlets.

Why do we extend multiple inlets and outlets? Because of the usual control volume, usual

equipment can have multiple inlets, multiple outlets. What is shown here is a physical model

with multiple inlets and multiple outlets. Let us say you have flow entering here, flow

entering through these 3 inlets, and then flow goes out through these outlets (object

demonstrated in the lecture video). So, as a physical model, so that, we can easily understand

what you mean by control volume with multiple inlets and then multiple outlets.

Now, we are going to make it a little more general by considering any arbitrary shape with

some portion to be an inlet and then some portion to be outflow (left hand side image). How

do we imagine? We combine all the surfaces through which there is inflow into an inflow

surface, and then all the surfaces through which there is outflow into an outflow surface. So,

our control volume is made equivalent to control volume where part of the surface is inflow,

part of the surface is an outflow. So, that it is very general it not be a particular geometric

shape, it could be any surface where part of the surface inlet, part of the surface is an outlet.



The control volume is drawn to an arbitrary shape. So, that the equation which we are going

to derive is applicable for any arbitrary shape. The brown dashed line represents the fixed

control surface. And then as we have seen earlier, it also represents the system and both of

them are coinciding at time t.

So, just, in this case, the control volume and system had a simple, easily understandable

geometry. In this present case, there is some arbitrary shape, but conceptually they are the

same meaning that you have a fixed control surface, you have a system and both coincide at

time t. Now just like we had the system moved, because of the fluid flow through the control

volume. Here again, this blue dashed line represents the surface of the system which has

moved through the control volume. And just like here, we have region 1, through which there

was flow into the control volume; and then region 2 which represents the volume of fluid

which as cross the control surface and left the control volume and as we have seen earlier we

have control volume minus 1 (CV 1).−

So, we have analogous descriptions between region 1, region 2, and the CV 1 for all three−

geometries. Conceptually they are the same, in terms of physical meaning they are the same,

only in terms of geometry they are different. Now, well defined geometry in this case some

arbitrary shape, an arbitrary configuration in this case. To better visualize taken a duster

purposefully, which is easily available in a class; and which has some kind of arbitrary shape

here and then of course, these are well defined shapes here.

So, part of the surface is an inlet, part of the surface is an outlet and that is what we have

taken; and as the system moves through the control volume you have region 1, region 2, and

then control volume minus 1 as the remaining region. I discuss the analogy between these

two geometries. So, that most of the steps are common to both the derivations, except a few

terms and hence I discussed the analogy between these two control volumes.
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Now, what are the steps which are common to both the control volumes? The step which tells

that, the rate of change of property of a system in terms of

∆𝐵
𝑠𝑦𝑠

∆𝑡 =
𝐵

𝑠𝑦𝑠
𝑡+∆𝑡( )−𝐵

𝑠𝑦𝑠
𝑡( )

∆𝑡

this step is common to both the control volumes.

Now, here again, we have taken, the system and control volume to be coinciding. So,

𝐵
𝑠𝑦𝑠

𝑡( ) =  𝐵
𝐶𝑉

𝑡( )

This step is also valid. Now as in the earlier case, here also the system moved partly out of

the control volume and we have corresponding regions 1, 2 and then control volume minus 1.

So,

𝐵
𝑠𝑦𝑠

𝑡 +  ∆𝑡( ) = 𝐵
𝐶𝑉

𝑡 +  ∆𝑡( ) − 𝐵
1

𝑡 +  ∆𝑡( ) + 𝐵
2

𝑡 +  ∆𝑡( )

This expression which relates B system at to B control volume at , B region 1𝑡 + ∆ 𝑡 𝑡 + ∆ 𝑡

and B region 2 , is also valid.𝑡 + ∆ 𝑡 𝑡 + ∆ 𝑡

∆𝐵
𝑠𝑦𝑠

∆𝑡 =
𝐵

𝐶𝑉
𝑡 + ∆𝑡( )−𝐵

1
𝑡 + ∆𝑡( )+𝐵

2
𝑡 + ∆𝑡( )−𝐵

𝐶𝑉
𝑡( )

∆𝑡

Now, the difference in the property of the system is divided by , where we substitute for B∆𝑡

system expression, and for B system at t this expression is also valid.𝑡 + ∆ 𝑡



∆𝐵
𝑠𝑦𝑠

∆𝑡 =
𝐵

𝐶𝑉
𝑡 + ∆𝑡( )−𝐵

𝐶𝑉
𝑡( )

∆𝑡 −
𝐵

1
𝑡 + ∆𝑡( )

∆𝑡 +
𝐵

2
𝑡 + ∆𝑡( )

∆𝑡

The next step is the rearrangement, of course, it’s going to be valid and later we took a limit

of this equation delta that is also valid,𝑡→0

𝑑𝐵
𝑠𝑦𝑠

𝑑𝑡 =
𝑑𝐵

𝐶𝑉

𝑑𝑡 + 𝐵̇
𝑜𝑢𝑡

− 𝐵̇
𝑖𝑛

The left hand side becomes the rate of change of property for the system, and right hand side

becomes the rate of change of property for the control volume.

What is the significance of is the rate at which the property leaves the control volume𝐵̇
𝑜𝑢𝑡

and tells the rate at which property enters the control volume. Till this everything is the𝐵̇
𝑖𝑛

same as the derivation which I have done for the simple control volume, but now we have

extended for arbitrary control volume with the corresponding meaning of 1, 2 and then

control volume and system.

𝑑𝐵
𝑠𝑦𝑠

𝑑𝑡 =
𝑑𝐵

𝐶𝑉

𝑑𝑡 + ρ
2
𝑏

2
𝐴

2
𝑣

2
− ρ

1
𝑏

1
𝐴

1
𝑣

1

Now, this last step, where we found an expression for in terms of these properties𝐵̇
𝑜𝑢𝑡

 

namely density, the property per unit mass, the area, the velocity both for outflow and inflow

is restricted to the geometry which I have considered or to the control volume which I have

considered. So, only this expression, even in this expression only these two terms

are not applicable for any general control volume. What is it going to do now?𝐵̇
𝑜𝑢𝑡

 𝑎𝑛𝑑 𝐵̇
𝑖𝑛

Express for any general control volume and that is what I am going to do now.𝐵̇
𝑜𝑢𝑡

 𝑎𝑛𝑑 𝐵̇
𝑖𝑛

Now we will extend the expressions here, so that is applicable for any general control

volume.
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Now, let us consider the outflow for the control surface which easier to discuss first. What is

shown here is the outflow control surface denoted by CSout; what do you mean by that? The

control volume is to the left of this. So, you have the control volume and this is the control

surface and flow takes place out of the control volume through this control surface. That is

important because we identify the direction of an area with a normal and that normal is

always outward drawn normal.

So, the control volume, LHS is inside and RHS is outside. So, what I have taken here (upper

right side image in slide) is a small area; small area dA and then the direction of the area is

indicated by the normal to the area and the normal is drawn outward or in short, we say

outward normal, why is it outward normal? The control volume is on this side and this is the

outside to the control volume. Now, what is shown here (middle image in slide) is also a

velocity vector; which represents the velocity of fluid flow through this small area. And now

unlike the earlier case; earlier case the velocity vector was along the normal to the surface.

Now, we have allowed for variation in the angle between the velocity vector and the normal

to the face. We said, we are going to extend to the case where the velocity vector can make

any angle with the normal to the plane and that is why the normal is in one direction. They

have a plane here and then the normal and that normal and the velocity through the face are

making angle between each other.θ

Now, why did we consider a small area dA? We said we want to extend where the properties

change across the surface area. So, that is why, I take a small area, so that, I can integrate



over the control surface so that I allow for variation across the surface. That is why, we take a

small area dA and we will find out what is the rate of flow of property through the small area,

then integrate for the entire control surface. So, we allow for variation across the control

surface.

Let us do that quantitatively in terms of expressions.

∆𝐵 = 𝑏ρ∆𝑉 = 𝑏ρ∆𝑙
𝑛
𝑑𝐴 = 𝑏ρ∆𝑙 𝑐𝑜𝑠θ 𝑑𝐴 = 𝑏ρ𝑣∆𝑡 𝑐𝑜𝑠θ 𝑑𝐴

represents the amount of property which has flown out of the control volume through the∆𝐵

control surface. Now, just like in the earlier case, we will express that in terms of , where∆𝑉

is the volume of liquid which has flown out of the control volume, you multiply by∆𝑉

density, multiply by the property value per unit mass. So, these three terms put together𝑏ρ∆𝑉

gives you the amount of property associated with the volume which has left the control

volume.

Now, how do we express this , the volume of liquid which has left the, which is leaving∆𝑉

the control volume. And that is what is shown in this figure, the area dA is shown here and

then this volume is equal to the length . The is the length along the normal to∆𝑉 ∆𝑙
𝑛
𝑑𝐴 ∆𝑙

𝑛

the surface; we have a surface a small area, we have a normal to that, the volume is that area

multiply by the length perpendicular to that area. And that is what gives us = ; what∆𝑉 ∆𝑙
𝑛
𝑑𝐴

has to be kept in mind is that the is perpendicular to the area.∆𝑙
𝑛

Now, what is that we know, what is the length we know? We know the velocity of the fluid.

So, what we know is this distance which represents, the distance traveled by velocity over∆𝑙
𝑛

a time interval . To repeat we are given the velocity vector and what is the length we∆𝑡 𝑣

know, this length ; and that length represents, the distance travel by the fluid along the∆𝑙
 

direction of velocity. So, we know this which is given by the velocity into the time∆𝑙
 

interval .∆𝑡

What we want is the length along the normal; what we know is the length along the velocity

vector. Which means that to find out this length, I take a projection of this along the∆𝑙
 

direction of the normal; which is nothing, but this length multiplies by the cos of the angle

between them, which is . And that is what is shown here, we have b as such rho as𝑐𝑜𝑠⁡(θ)



such V has been represented in terms of dA the small area multiply by the length∆

perpendicular to the area. That length perpendicular to the area has been represented in terms

of the length , which represents the distance travel by the fluid in a time t multiplied by∆𝑙 ∆

the cosine of the angle between the two directions. So, I take the projection.

Now, this we said is the distance travel with the fluid in time t. So, multiply the velocity∆𝑙 ∆

into t. So, finally, the expression represents the amount of property that has∆ 𝑏ρ𝑣∆𝑡 𝑐𝑜𝑠θ 𝑑𝐴

left the control volume through the outflow control surface. Now, what do we do, as we have

done earlier we will take the limit ,∆𝑡→0

𝑑𝐵̇
𝑜𝑢𝑡

= ∆𝐵
∆𝑡  = ρ𝑏𝑣 𝑐𝑜𝑠θ 𝑑𝐴

This represents the rate at which the property leaves the control volume through the outflow

control surface. But what does this rate represent, whatever rate living through this small area

that is why it is denoted as d ; dB represents that this rate is for a small area and the dot𝐵̇
𝑜𝑢𝑡

represents it is the rate and out represents that is it is leaving the control volume.

We want this rate for the entire control surface. So, we integrate this d over the control𝐵̇
𝑜𝑢𝑡

surface through which there is an outflow.

𝐵̇
𝑜𝑢𝑡

=
𝐶𝑆

𝑜𝑢𝑡

 

∫ 𝑑𝐵̇
𝑜𝑢𝑡

=
𝐶𝑆

𝑜𝑢𝑡

 

∫ ρ𝑏𝑣 𝑐𝑜𝑠θ 𝑑𝐴 =
𝐶𝑆

𝑜𝑢𝑡

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴

So, d represents rated which property leaves through the outflow control surface. We𝐵̇
𝑜𝑢𝑡

know can be represented in terms of the dot product between the v vector and the n𝑣 𝑐𝑜𝑠θ

vector. So, v is the velocity vector, n represents the direction of the normal. So, gives you𝑣. 𝑛

, n is the unit normal vector. So, becomes .𝑣 𝑐𝑜𝑠θ 𝑣. 𝑛 𝑣 𝑐𝑜𝑠θ

So, this integral expression represents the rate at which the property leaves the control

volume through the outflow control surface. Now we have taken two things into account by

this integral expression; one, the angle between the velocity vector and the normal vector.

Secondly, by taking a small area and then integrating it, we allowed for various in the

properties namely density, b, and velocity within the area those were objectives. And by

considering a very general shape of the control volume, we are allowed for multiple inlets

multiple outlets that is where we started off; and not even multiple inlets multiple outlets, any



part of the surface can be inlet or outlet. Now, let us repeat this analogously for the inflow

control surface.

(Refer Slide Time: 20:12)

Now, what is shown here is the inflow control surface, what does it mean, the control volume

is on an outward region or outside the region for this control volume. And that is why as we

have discussed earlier, the normal is always drawn as an outward normal which means it

should point away from the control volume. The control volume is in the right and that is why

this is the inflow surface through which there is fluid inflow entering the control volume. And

n always should be drawn, so convention that, you always draw n as an outward normal and

that is why it is pointing outwards.

Now, as we have done in the earlier case, we have considered a small area dA and the

direction of that normal to the phase is n vector, the direction of the velocity through this

small area is v vector and as an angle and the earlier case between the normal to the phaseθ

and the v vector; normal to the area dA and to the v vector.

Let us see how do we proceed in this particular case, it is almost analogous which a small

difference.

∆𝐵 = 𝑏ρ∆𝑉 = 𝑏ρ∆𝑙
𝑛
𝑑𝐴 =− 𝑏ρ∆𝑙 𝑐𝑜𝑠θ 𝑑𝐴 =− 𝑏ρ𝑣∆𝑡 𝑐𝑜𝑠θ 𝑑𝐴



So now, represents the amount of property which is entering the control volume. We∆𝐵

represent as, that into the V which is the volume of liquid which enters the control volume∆

through the inflow control surface multiply by density gives the mass of fluid multiply with a

property per unit mass. So, this will give you the amount of property which associated with

the volume which has entered the control volume through the inflow control surface.

Now, as we have done earlier, we will represent this volume in terms of the length normal to

the area into dA and that length is shown here is . Remember that length is∆𝑙
𝑛

∆𝑙
𝑛

∆𝑙
𝑛

perpendicular to the area. So, we represent the volume in terms of the length perpendicular to

the area and then multiply by the small area dA and that volume is what is given.

Now, what is known to us, as in the earlier case, is known is this which is the length along∆𝑙

the velocity vector and that represents the distance traveled by the fluid in a time interval t.∆

So, we know the along the velocity vector, what we want is the normal to the area. So,∆𝑙 ∆𝑙
𝑛

we take a projection of along this direction and these are related by the cos of the angle∆𝑙

between them. But now the difference between the earlier case and the present case is that; in

the earlier case, the angle was now the angle between them is 180 .θ − θ

So, if you take a cosine of that you get minus cos( ) and that is what is shown here I haveθ 𝑏ρ

as in the earlier expression this is represented as with the negative sign. Because∆𝑙
𝑛

∆𝑙
 
𝑐𝑜𝑠θ

the angle between these two lengths is 180 and not as in the earlier case, that results in− θ θ

a minus sign. But keep in mind, in this case, because n vector and velocity vector are in a

different direction, the angle between them, still represents the angle between the velocityθ

and the normal vector; that angle is going to be more than 90. So, this will be negative, the

expression final value will be positive; because we are taken this as an amount that cannot be

negative. So, the final value will be a positive value, because this negative sign and cos isθ

negative they make it as a positive value.

We will discuss more on that in the next to the next slide and let us go ahead. Now the is∆𝑙

the distance travel by fluid along the direction of velocity, we express that in terms of the

velocity into t. So,∆

𝑑𝐵̇
𝑖𝑛

= ∆𝐵
∆𝑡  =− ρ𝑏𝑣 𝑐𝑜𝑠θ 𝑑𝐴



As in the earlier case we divide this expression by t and then take limit ; and what we∆ ∆𝑡→0

get is the rate at which the property enters the control volume over the small area dA as were

in the previous case.

𝐵̇
𝑖𝑛

=
𝐶𝑆

𝑖𝑛

 

∫ 𝑑𝐵̇
𝑖𝑛

=−
𝐶𝑆

𝑖𝑛

 

∫ ρ𝑏𝑣 𝑐𝑜𝑠θ 𝑑𝐴 =−
𝐶𝑆

𝑖𝑛

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴

Now, as we have done for the outflow surface, we will integrate this expression over the

entire inflow surface; So, we will integrate over the entire area of the inflow control surface.

What I have done is, substituted for from earlier expression and is expressed as𝑑𝐵̇
𝑖𝑛

𝑣 𝑐𝑜𝑠θ

earlier in terms of remember. Even in this case are always is the angle between the v𝑣. 𝑛 θ

vector and the n vector. So, remember we have still a minus sign and will be negative𝑣. 𝑛

eventually is positive.𝐵̇
𝑖𝑛
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Now, let us put them all together,

𝑑𝐵
𝑠𝑦𝑠

𝑑𝑡 =
𝑑𝐵

𝐶𝑉

𝑑𝑡 + 𝐵̇
𝑜𝑢𝑡

− 𝐵̇
𝑖𝑛

We have written this expression for the Reynolds transport theorem which relates the rate of

change of property for system, rate of change of property for control volume, and what we

discussed was this cannot be represented in terms of simplified expressions.𝐵̇
𝑜𝑢𝑡

 𝑎𝑛𝑑 𝐵̇
𝑖𝑛



𝐵̇
𝑜𝑢𝑡

− 𝐵̇
𝑖𝑛

=
𝐶𝑆

𝑜𝑢𝑡

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴 − −
𝐶𝑆

𝑖𝑛

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴( )
Now we have got more general expressions for them and let us see how do, we simplify that.

Now, two minuses becomes plus and then the entire control surface is split into partly inflow

and then partly outflow.

𝐵̇
𝑜𝑢𝑡

− 𝐵̇
𝑖𝑛

=
𝐶𝑆

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴

So, what do I do, I add this control surface out and control surface in into the entire control

surface. Now the question arises, there can be part of the control surface where there is no

inflow or outflow that would not contribute because the velocity will be 0. We will discuss

this also in detail in the next slide.

But for the moment, we have summed up the control surface out, control surface in as the

entire control surface. So, this is the control volume, all these put together the control surface.

Let us say there are 2, 3 inflow control surfaces, and 3 outflow control surfaces, and some

surfaces where there is no flow, at all the surfaces there is this integral will become 0. So, a

summed up and represented as CSout and CSin, as the CS.

Let us substitute that in the earlier expression and then we get

𝑑𝐵
𝑠𝑦𝑠

𝑑𝑡 =
𝑑𝐵

𝐶𝑉

𝑑𝑡 +
𝐶𝑆

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴

Let us substitute the integral form of B system and B control volume which you have seen

earlier.

𝑑
𝑑𝑡

𝑠𝑦𝑠

 

∫ ρ
 
𝑏 𝑑𝑉( ) = 𝑑

𝑑𝑡
𝐶𝑉

 

∫ ρ
 
𝑏 𝑑𝑉( ) +

𝐶𝑆

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴

So, this represents rate of change of property for system is equal to the rate of change of

property for control volume and then last term represents the net rate of outflow of property

through the control surface. We will see why is that, shortly. Now, for a fixed control volume,

I can change the order of this differentiation and integration. Let me do that, but with a small



change, when I integrate and then differentiate once you integrated volume all the spatial

changes are taken care. So, after integrate, only time is the only independent variable.

𝑑
𝑑𝑡

𝑠𝑦𝑠

 

∫ ρ
 
𝑏 𝑑𝑉( ) =

𝐶𝑉

 

∫ ∂
∂𝑡 (ρ

 
𝑏) 𝑑𝑉 +

𝐶𝑆

 

∫ ρ𝑏 𝑣. 𝑛 𝑑𝐴

So, I will repeat again, this is a volume integral, once you are integrated over volume all the

spatial variants are taken into account. So, after integrate it is a function of time only; and that

is why we are used . Now how am I able to bring the inside? Because the boundary of𝑑
𝑑𝑡

𝑑
𝑑𝑡

the control volume the control surface is not changing, so the volume you can bring in the 𝑑
𝑑𝑡

inside the volume integral. But when you do that now b, both and b are b put togetherρ ρ ρ

can be a function of both space and time; and hence this becomes a partial derivative.

You can bring in, because the boundary is fixed, but when you bring in, these can be

functions of space; and hence the total derivative becomes a partial derivative, because their

function of both space and time anyway. And this is the general form of the Reynolds

transport theorem. We look at the significant shortly, but before that what we will see now is

the, this particular term what does it represent, how does it take care ofρ𝑏 𝑣. 𝑛 𝑑𝐴

automatically inflow and outflow.


