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We have derived the differential form of energy balance equation starting from total energy

and  expressed  in  terms  of  temperature.  Also  closed  it  using  the  Fourier’s  law  of  heat

conduction simplified it, and now it is time to look at the applications. Let us look at simple

applications,  of course, the main application is to find out the temperature profile we are

going to find out the temperature profile in a slab and then extent that to a furnace wall and

then in a planar Couette flow.
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So, let us start with the first application which is heat conduction in a slab, what we have is a

slab like and, then the two surfaces are maintained at two different temperatures, let say T 0

and then T L. The thickness of this slab is L and what is that we are interested in, what is the

temperature  profile  across  the  thickness  of  this  slab,  how  temperature  varies  with  the

thickness of the slab.

We will consider the case where the left hand side surface is at higher temperature, and the

right  hand  side  surface  at  a  lower  temperature.  And,  so  the  heat  flows  from  higher

temperature to lower temperature along the positive x axis and takes place by conduction.
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We will consider steady state condition and we are going to consider only one dimensional

heat transfer and that is why it says, steady state one dimensional heat conduction. So, we

will start with an assumption that the thermal conductivity is a constant meaning that it does

not vary with temperature.

Now, we have seen  different  simplifications  of  the  energy balance  equation,  so now we

should take the form which is  applicable for solids,  because we considering a solid  slab

material. 

ρ cp
∂T
∂ t

=k ( ∂
2T

∂ x2
+
∂2T

∂ y2
+
∂2T

∂ z2 )

So the energy balance for solids was shown to be this form. Now, this gets further simplified

because it is steady state, so the left hand side becomes 0, because it is one dimensional these

two  terms  become  0.  And,  we  are  left  only  with  the  temperature  variation  along  the  x

direction.

d2T

d x2
=0

This is second order in differential equation. We require two boundary conditions to solve

this second order ODE and the temperatures are specified both ends of this slab and those are

the boundary conditions at x=0, the left hand the left surface of this slab.



So, the temperature is 

T=T 0at x=0 ,

T=T Lat x=L

So those serve as the boundary conditions.
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So, let us summarize them here 

d2T

d x2
=0 ;T=T 0at x=0 ;T=T Lat x=L

The energy balance has finally, simplified to just a simple second order ordinary differential

equation with the right hand side 0, does not even look like energy balance now. But, we

know the physics behind it we know how we arrived at that particular equation, and these are

the boundary conditions which we have discussed.

So, we integrate once it becomes 

dT
dx

=C1

Integrate once again we get 



T=C1 x+C 2

Now, we need to evaluate the two constants, we will use both the boundary conditions at

T=T 0at x=0. So, if we substitute in this equation we get 

C2=T 0

Now, let us use the second boundary condition T=T Lat x=L.

T L=C1L+C 2

So, if you rearrange we get the constant C1 as 

C1=
T L−T 0
L

So let us substitute both the constants in the equation. And, we get 

T=(
T L−T 0
L ) x+T 0

This gives the temperature profile across the thickness of this slab at x = 0 we have T 0. And,

x = L we get T L and that is a temperature profile shown in the figure. 

We can also express this in dimension less form, so 

T−T 0
T L−T 0

=
x
L

So, we can express the temperature profile in this dimensionless form as well, unless evaluate

the heat flux heat flux is given by 

qx=−k dT
dx

=−k C1=−k
T L−T 0
L

=k
T 0−T L
L

What  do  we  observe?  The  heat  flux  is  a  constant.  Because  L  is  a  constant,  the  end

temperatures  are  constant;  we  assume  the  thermal  conductivity  to  be  constant.  So,  all

variables here are constant the heat flux is just a constant; it does not vary throughout the

thickness of this slab you have only one heat flux value.



We should also know that in the previous slide we have discussed all the physics and what

you have discussed in this slide is just pure maths. At this stage the physics ends and then the

maths starts, so that should also be kept in mind. So, that we clearly understand what is the

physics of the problem, what is the maths of the problem.
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If we carefully recall our discussion on the previous two slides many steps many words also I

would say would be same as what we discussed earlier for the case of planar Couette flow.

So, let us now discuss the analogy between momentum and heat transport by using the two

examples, one is this planar Couette flow. And then the other one is the present example of

heat conduction in a slab.

Let us see how they are very much analogous, so left hand side we have velocity profile in a

planar Couette flow, the flow between two parallel plates the bottom plate fixed, the top plate

set in motion. Right hand side we have temperature profile in a slab we have a slab the left

and right surfaces are maintained in two different temperatures 

So, the plates we have two different velocities 0 and then velocity of the plate, and in the slab

we have two different temperatures. What is the governing equation? The governing equation

just becomes 

d2 v x
d y2

=0



And, the governing question in heat transfer is

d2T

d x2
=0

The boundary conditions for the case of planar Couette flow are 

vx=0at y=0 ;v x=v pat y=h

For slab

T=T 0at x=0 ;T=T Lat x=L

Of course, the direction is different first it is along the y axis here is along the x axis.

Now, how do we solve, so the physics of the problem ends here, the governing equation and

the boundary conditions. Now, we start solving them 

For Couette flow we integrate once we get 

d v x
dy

=C1

Then for slab we integrate once we get 

dT
dx

=C1

Integrate again we get 

vx=C1 y+C 2

T=C1 x+C 2

We evaluate the two constants we use the boundary condition; the first boundary condition at

the bottom plate and find 

C2=0

And for slab once again we use a boundary condition at the left surface and find out the

constant 



C2=T 0

Next we use the second boundary condition which is velocity of the top plate and find the

constant as 

C1=
v p
h

Similarly for slab, we use the boundary condition in terms of temperature at the right surface

and find out the constant 

C1=
T L−T 0
L

Substitute the constants and then get the expression for the velocity profile, 

vx=
v p
h
y

And, substitute the constants get the expression for the temperature profile.

T=(
T L−T 0
L ) x+T 0

At this stage they may look different, but moment we express in terms of dimensionless form

they become very much analogous; 

vx
v p

=
y
h

The dimensionless velocity for the Couette flow, 

T−T 0
T L−T 0

=
x
L

For slab again dimensionless temperature, both the profiles are linear.

We use the arrow mark to show velocity, but for temperature as a scalar, so we do not use an

arrow mark. And, in both the cases we should know that the term which remained in the

conservation equation was due to molecular transport. In the case of a fluid flow it was the



molecular transport of momentum, and in the case of a slab it is the molecular transport of

heat.

So, only those terms remained and the solution,  procedure,  the profile  all  are very much

analogous, what is the reason we discussed the previous lecture that momentum and heat

transport  are  mathematical  analogous  when  it  is  one  dimensional  case.  Because  we  are

discussing  one  dimensional  case  both  momentum  and  heat  transport  are  mathematically

analogous.


