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We will look at different levels of simplifications, of the different energy balance equation, to

forms which are usually used. So, let us start the equation, which I have seen in the previous

slide. 

ρ cp
DT
Dt

=[ ∂∂ x (k ∂T∂x )+ ∂
∂ y (k ∂T∂ y )+ ∂∂ z (k

∂T
∂ z )]−(

∂ ln ⁡(ρ)
∂ ln ⁡(T ) )p

Dp
Dt

Now, let us say we have an ideal gas, let us see how the above equation gets simplified. For

an ideal gas we know 

ρ=
pM
RT

Now, let us take logarithm on both the sides. 

ln ( ρ )=ln ( pMR )−ln ⁡(T )



And, 

( ∂ ln ⁡(ρ)∂ ln ⁡(T ))p=−1

So, we can just substitute that here, it becomes still simpler. 

ρ cp
DT
Dt

=[ ∂∂ x (k ∂T∂x )+ ∂
∂ y (k ∂T∂ y )+ ∂∂ z (k

∂T
∂ z )]+ DpDt

So, this is the differential energy balance equation for an ideal gas. Now, let us say we have a

fluid flowing at constant pressure, what happens? 
Dp
Dt

=0, so the last term vanishes when, I

say constant pressure, pressure is not a function of time and space. 

ρ cp
DT
Dt

=[ ∂∂ x (k ∂T∂x )+ ∂
∂ y (k ∂T∂ y )+ ∂∂ z (k

∂T
∂ z )]

Remember it  is  
Dp
Dt

,  it  has variation of pressure with time and spatial  variation also. So,

pressure is just a constant, it is not varying both with time and spatial location. And, because

pressure is  constant  the last  term drops out.  Let  us go back to the first  equation,  in this

equation if you consider density as constant for example, let us say water is flowing. The

effect of temperature on density of water is not significant. So, the term, ( ∂ ln ⁡(ρ)∂ ln ⁡(T ) )p will not

be significant or if it is independent then it is 0. So, once again that term drops out. In this

case because pressure is constant, in this equation because density is constant, both result in

the same equation.

ρ cp
DT
Dt

=[ ∂∂ x (k ∂T∂x )+ ∂
∂ y (k ∂T∂ y )+ ∂∂ z (k

∂T
∂ z )]
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.

Now, let us simplify further, this is the equation which I have seen in the previous slide. 

ρ cp
DT
Dt

=[ ∂∂ x (k ∂T∂x )+ ∂
∂ y (k ∂T∂ y )+ ∂∂ z (k

∂T
∂ z )]

At this stage, we have  k  inside the spatial derivative. So, thermal conductivity can change

with spatial  location,  if you assume thermal conductivity to be a constant. Why should  k

change  with  spatial  location,  thermal  conductivity  as  you  have  seen  is  a  function  of

temperature.

So,  if  you have  a  solid  object  with  different  temperatures  then,  k  can  vary  with  spatial

location also because, it is depends on temperature. If you assume k  to be constant then, you

can take this out of the spatial derivative and that becomes a second order derivative. 

ρ cp
DT
Dt

=k ( ∂
2T

∂ x2
+
∂2T

∂ y2
+
∂2T

∂ z2 )

Left hand side, I have expressed the substantial derivative in terms of the local component

and the convective component. Right hand side, I have expressed in terms of the Laplacian of

temperature. 

ρ cp( ∂T∂t +v .∇ T )=k ∇2T



So, this is the better representation of this equation. Now, let us say we have a solid and then

a stationary solid  now, what  happens for a stationary  solid.  The substantial  derivative of

temperature which has two components, only the first component will be remain, the second

component which represents convection will become 0, v .∇T=0.

So, 
DT
Dt

 will become 
∂T
∂ t

 and that is what is shown here. 

ρ cp
∂T
∂ t

=k ( ∂
2T

∂ x2
+
∂2T

∂ y2
+
∂2T

∂ z2 )

Now, suppose if it is 1 dimensional heat conduction in the solid, 

ρ cp
∂T
∂ t

=k ∂
2T

∂ x2

Further if it is steady state, 

∂2T

∂ x2
=0

If you look at this equation should be really happy at it, the way in which we started taking all

the  energy  terms  in  to  account  and  work  done  term,  heat  input  term.  Several  levels  of

simplification, you get a very simple nice looking equation. So, if you have a solid 1D, if you

have solid 1D and then transient is also there and solid, 3D transient. 

So, that is why the in one sense the discussion energy balance is simpler than the than the

discussion on momentum transport or fluid mechanics. One big difference is fortunately q is

the vector, the heat flux is the vector, it is the big simplification for us,  τ was a tensor and

many terms drop out in the energy balance equation, the terms which contribute are only few

or one of them, I would say.



(Refer Slide Time: 07:21)

So, let us look at the analogy between momentum transport and heat transport in terms of the

conservation  equations.  You  have  already  seen  these  two  equations  and  discussed  the

analogy. 

∂( ρv x)

∂t
+
∂ (ρ vx vx )

∂x
+
∂ (ρ v y v x )

∂ y
+
∂ (ρv z vx )

∂ z
=−μ(

∂ τ xx
∂ x

+
∂ τ yx
∂ y

+
∂ τ zx
∂ z )− ∂ p∂ x +ρ gx

∂( ρe)
∂ t

+
∂ (ρv xe )

∂ x
+
∂ (ρv y e )

∂ y
+
∂ (ρ vz e )

∂ z
=−(

∂qx
∂ x

+
∂q y
∂ y

+
∂ qz
∂ z )−(

∂ (p v x )
∂ x

+
∂ (p v y )

∂ y
+
∂ ( p v z)
∂ z )

Same equations we will write again now, in terms of the measurable variables. 

ρ
D v x
Dt

=ρ[ ∂v x∂ t +v x
∂v x
∂x

+v y
∂ vx
∂ y

+v z
∂ vx
∂ z ]=ρ gx− ∂ p∂ x +μ ( ∂

2 vx
∂ x2

+
∂2 vx
∂ y2

+
∂2 vx
∂ z2 )

This is the linear momentum balance; this is the Navier-Stokes equation. Substitute at for τ,

the molecular momentum flux in terms of the velocity gradient using the Newton’s law of

viscosity. 

Let us write the energy equation once again in terms of measurables, 

ρ cp
DT
Dt

=ρc p( ∂T∂t +v x
∂T
∂ x

+v y
∂T
∂ y

+vz
∂T
∂ z )=k ( ∂

2T

∂ x2
+
∂2T

∂ y2
+
∂2T

∂ z2 )−(
∂ ln ⁡(ρ)
∂ ln ⁡(T ))p

Dp
Dt



I  have  expressed  the  heat  flux  or  the  components  of  heat  flux,  in  terms  of  temperature

gradient, using the Fourier’s law of heat conduction and return this equation. So, now, the

equations  are  analogous,  we  have  the  transient  terms  and  convective  transport  terms,

molecular transport terms and then surface force due to pressure, body force rate of work

done by pressure force. And, if you look at this form of the conservation equation, once again

they are analogous.

Left hand side, they are written in terms of the substantial derivative. And, right hand side we

have Laplacian of velocity here, Laplacian of temperature of course, other terms are also

there. Of course, we should know that, three such equations are there for the momentum,

energy balance only this one equation alone.
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Let us summarize this lecture, we have discussed the Fourier’s law of heat conduction, which

relates  heat  flux  to  temperature  gradient,  we  have  also  discussed  the  analogy  between

Fourier’s law of heat conduction and Newton’s law of viscosity. In 1D they are analogous; in

3D they are not analogous.

And, using the Fourier’s law of heat conduction, we express the energy balance completely in

terms of temperature. We also looked at the simplifications of the differential energy balance

equation. And finally, the terms that were left out were the transient term, the convection

term and the heat conduction term. Only those were the terms finally, which remained in the

differential energy balance equation.


