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We derived the differential energy balance equation in terms of total energy and then through

a series of steps, we expressed in terms of temperature. And we realized that, we have the

components  of  heat  flux  vector,  which  needs  to  be  expressed  in  terms  of  temperature,

temperature gradient to close the system of equations and that is what we are going to discuss

in this lecture. And first, we are going to discuss about the Fourier’s laws of heat conduction

which will close the system of equations and then simplifications of the differential energy

balance to forms which are usually applied.
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Before, we discuss the Fourier’s laws of heat conductions; let us have a few recalls slides on

Newton’s law of viscosity. Now if you recall, we interpreted  τ in two different ways. First

was in terms of viscous stress and we express the Newton’s law of viscosity as the viscous

stress;  proportional  to  the  velocity  gradient  and  the  constant  of  proportionality  is  the

viscosity.
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Then  when  we  came  to  the  transfer  phenomena  part  of  the  course,  when  we  discuss

momentum transport, we viewed τ as molecular momentum flux.
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And, expressed the Newton’s law of viscosity as the molecular moment of flux proportional

to the velocity gradient, to take care of sign convention, we introduced the minus sign the

constant  of  proportionality  was  the  viscosity.  Now,  this  interpretation  of  τ as  molecular

momentum flux is what is relevant for present discussion. Remember, when we discussed the

two viewpoints of τ, we said one advantage of interpreting τ as molecular momentum flux is

that. We can discuss the analogy between molecular momentum flux, molecular heat flux and

then species flux and that is what we will see now. 

So, the discussion which follows now for a relating heat flux and temperature gradient will be

analogous to our discussion on relating molecular momentum flux and velocity gradient. It

will not be similar to that discussion on relating viscous stress and then velocity gradient.

That is one of the reasons for interpreting  τ as molecular momentum flux. Let us see how

they are analogous.
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So, we will discuss the Fourier’s law of heat conduction analogous to the discussion we had

on Newton’s law of viscosity, where we interpreted τ as molecular momentum of flux. Now,

what we will do is consider two plates which are parallel to each other and whose area is A. 

And,  a  slab of  solid  material  is  located  between the two large  parallel  plates.  The solid

material is shown in the above referred slide. So, we have two plates and then we have a solid

material between them. What is the difference? So, far we have seen this configuration as two

parallel plates with fluid flowing between them instead of that now, we have the two parallel

plates if we have a solid; slab between the two plates. 

So,  we  will  take  the  condition,  where  the  two  plates  are  maintained  at  two  different

temperatures, the top plate is maintained at  T 0 and, then the bottom plate is maintained at

temperature T 1 which is higher than T 0.

Now,  here  constant  rate  of  heat  flows  required  to  maintain  the  temperature  difference.

Constant rate of heat flow is required from the region of higher temperature to the region of

low temperature. So, that this temperature difference is maintained. Now, it is experimentally

found that  that  is  a key word here,  experimentally  found that  for a  small  ∆T  let  us say

differing by let us say one degrees or 0.1 degrees centigrade. 

What is experimentally found is that the rate of heat flow per unit area; area through which

heat flows which you call us heat flux. Because it is rate of heat flow per area, it has heat flux



that is found to be proportional to the temperature decrease over distance y and that is what is

shown here. 

Q
A
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So, heat flux proportional to the temperature decrease over distance Y and the constant of

proportionality is the thermal conductivity of the slab material (k). 

Q
A
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Now for illustration, we have taken a solid slab between the two plates. When we discuss

Newton’s law of viscosity, we took a liquid or fluid between the two plates. What does the

reason why we have taken solid here? Remember conduction takes place in solids, liquids,

and gases as well.  Now, what  is  the reason for considering solid  in  the present  case for

discussing Fourier’s laws of heat conduction?

Let us say, if you have taken a liquid or a gas between the two plates, what will happen? The

bottom plate is at a higher temperature, and the top plate is at a lower temperature. So, the

fluid near the bottom plate will be at a higher temperature, it will have a lower density and

the fluid near top plate will be at a lower temperature, will have a higher density. So, which

means that this fluid will move here and there will be movement of liquid in the region which

you are considering, which will add to the complexity, which we call us convection.

So, to eliminate convection only, we have considered a slab of solid material between the two

plates. Further, if you have a fluid between the two plates there can be heat transfer because

of radiation. Of course, the radiation plays a significant role only at high temperatures, but to

eliminate radiation only, we have considered a slab of solid material between the two plates.

So, we considered a solid material between the two plates instead of a fluid so that we can

eliminate convection and radiation.

So, putting it the other way this equation or this experimental observation that rate of heat

flow per area is proportional to the temperature decrease over distance is valid for liquid and

gas also certainly, if convection and radiation are eliminated. So, that should be kept in mind.



(Refer Slide Time: 09:12)

Q
A

=k ∆T
y

We  have  seen  this  expression  in  the  previous  slide,  which  says  that  the  heat  flux  by

conduction is proportional to temperature gradient. So, let us start using more formal words,

so  
Q
A

 is  heat  flux,  and  
∆T
y

 is  temperature  gradient.  So,  heat  flux  by  conduction  is

proportional to temperature gradient. Now, how do we express this in differential form? That

is expressing in terms of difference. 

q y=k
∂T
∂ y

So, left hand side we have q y. Why is that it is q y? The example which you have considered,

we have x is along horizontal direction, y is along the vertical direction. And, flow of heat

takes place in the y direction from the lower plate to the top plate. And, that is why this is

heat  flux  in  that  y  direction.  Now,  we know that  a  heat  flows  from a  region of  higher

temperature to a region of lower temperature.

So, in this case the direction of heat flow is along the positive y axis, but we know that it is

from a higher temperature to a low temperature,  which means it is along the direction of

negative temperature gradient. So, if you substitute here what will happen 
∂T
∂ y

 is negative and



heat flux will be negative, but whenever something flows let it be velocity or heat flow I want

it to have a positive value, when it flows along the positive y axis.

So, to achieve that sign convention, what is that? Heat flux to be positive when heat flows

along positive y direction in the present case, if you leave this expression as such q y will be

negative, but heat flow will be happening along positive y axis, but I want it to be positive,

when heat is flowing along positive y axis. So, I include a negative sign. So, 

q y=−k ∂T
∂ y

Now, what happens? If you apply this equation for the present case,  
∂T
∂ y

 is negative q y is

positive and it is flowing along the positive y axis.

And, that is the Fourier’s law of heat conduction or the one dimensional form of the Fourier’s

law  of  heat  conduction.  What  you  have  discussed  is  once  again  analogous  to  what  we

discussed under the momentum transport. To begin with, we had the molecular momentum

flux proportional to the velocity gradient alone, there again we wanted the momentum flux to

be positive, when there is transport of momentum along the positive axis. So, we include a

negative sign. Of course, there it was momentum flux transported molecular momentum flux

transported from a region of higher velocity to lower velocity, but otherwise the reason for

adding negative sign in both the case is analogous.
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We will express the Fourier’s law of heat conduction in the three dimensional form. We have

this expression in the x direction; 

qx=−k ∂T
∂ x

We will just extend, we will write similar expressions for the y direction and the z direction. 

q y=−k
∂T
∂ y

qz=−k ∂T
∂ z

So,  heat  flux  in  a  particular  direction  is  proportional  to  the  temperature  gradient  in  that

direction. We can express these three equations in the vector form, which is very compact. 

q=−k∇T

q=qx i+q y j+qz k ;∇ T=
∂T
∂ x
i+
∂T
∂ y

j+
∂T
∂ z
k

So, the left hand side is the q vector right hand side we have minus of gradient of temperature

of course, thermal conductivity is the material property.

Now, if you look at this expression, I have used the same thermal conductivity in all the three

directions; you have qx,  q y,  qz. So, there is a direction attached to the left side. I have also

attached a direction to the gradient of temperature  
∂T
∂ x
, ∂T
∂ y

, ∂T
∂ z

, but  k  has been taken as

same  along  the  three  directions.  And,  that  we  know  defines  isotropic  material.  So,  this

Fourier’s  law  of  heat  conduction  which  are  discussing  is  applicable  for  homogeneous,

isotropic material. Why is it isotropic? At the same point the thermal conductivity is taken to

be same in all the three directions.

This may not be applicable for all the materials as you have seen earlier wood is a good

example  for  non-isotropic  material  thermal  conductivity  will  differ  depending  on  the

direction. And this is the second constitutive relation which you are coming across. The first

one  is  the  Newton’s  law of  viscosity.  This  is  second  constitutive  relation,  which  is  the

Fourier’s law of heat conduction.  As a quick recap what is a constitutive relation? Relate



unknown variables in terms of known variables. What is the unknown variable here; the heat

flux  known  variable  temperature.  And  this  relationship  closes  the  conservation  equation

energy balance here. 

Once again it is experimentally obtained, we are not deriving it we only stated that and then

describe behavior of material there it was a mechanical behavior, but now, it is a thermal

behavior. It is example for a constitutive relation. We will come across one more when we

discuss species balance. 

What is the units of k? If you take this equation 

q=−k∇T

Left hand side we have heat flux, which is watt per meter squared. Right hand side we have

temperature gradient and if you divide these two we will get Watt per meter Kelvin.

Unitsof k=W /m2

k /m
=
W
m. K

That is a unit of thermal conductivity; k can take on a wide range of values it could be as low

as 0.01 for gasses up to 1000 for pure metals very wide range. And, the thermal conductivity

is a function of temperature and pressure.
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This figure from Welty and others from the book Fundamentals  of Momentum Heat and

Mass Transfer shows the effect of temperature on thermal conductivity for solids liquids and

gases.  For  the  gases  thermal  conductivity  increases  with  temperature,  but  for  solids  and

liquids you see different trends, it could be increasing it could be decreasing similarly here

also could be increasing decreasing. So, different trends are possible.

Example: (Refer Slide Time: 17:12)

Let us have a very quick application of the Fourier’s law of heat conduction. We use the

Fourier’s law of heat conduction, in heat flux sensor to measure the heat flux. Let us read the

example, a thin film heat flux sensor is used to measure heat flux incident on a surface and

that is what is shown in the figure, we have a surface here and heat flux is incident on the

surface. A thin barrier thickness 0.2 mm of polyamide of thermal conductivity k equal to 0.25

W/m K is attached to the surface. 

The temperature difference measured across the barrier is 5 0C. For example, let us say you

have a thermo couple here, you measure that temperature you put a thermo couple here you

measured the temperature here. So, the temperature the difference measured across the barrier

is 5 0C, determine the heat flux incident on this surface. 

Solution:

So, let us use the Fourier’s law of heat conduction. Let us use in terms of magnitude that is

what we want. 



|q y|=k
∂T
∂ y

In terms of difference 

|q y|=k
∂T
∂ y

=k ∆T
∆ y

=0.25 x 5

0.2 x10−3
=6250W

That is the heat flux incident on the surface. Like to mention that by using this expression,

what we have done is; indirectly measured heat flux though it says measure heat flux it is not

direct  measurement.  We  have  measured  only  temperature  difference  directly  and  using

Fourier’s law of heat conduction, we have found out or determined the heat flux which means

you are measuring heat flux indirectly. Similar to our molecular momentum flux, velocity

gradient is measurable. 

Molecular momentum flux is not measurable; similarly the viscous stress also not, it’s not

measurable. Similarly here also heat flux is not measurable only temperature; temperature

gradients are measurable. So, this example also illustrates that.
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Now,  let  us  compare  the  one  dimensional  form  of  Newton’s  law  of  viscosity  and  the

Fourier’s law of heat conduction. And, see whether they are similar or not similar. Let us

write down the Newton’s law of viscosity the one dimensional form. 



τ y xMomT=−μ
∂v x
∂ y

And, for this we are going to interpret tau as molecular momentum flux that is why we have a

minus sign here. Let us write down the Fourier’s law of heat conduction, once again the one

dimensional case 

q y=−k ∂T
∂ y

Now, if you look at them they are similar expressions, both of them expresses a flux in terms

of a gradient of a measurable variable with the negative sign. So, left hand side in both the

cases, we have flux molecular momentum flux, heat flux, right hand side velocity gradient,

temperature  gradient.  In  both  the  cases,  the  coefficient  of  proportionality  is  the  physical

property  characteristic  of  the  material  the  first  case  viscosity  second  case  thermal

conductivity. 

So, based on this we can conclude that the molecular transport of momentum and heat are

mathematically analogous. Not alone that from a physical picture also they are analogous that

is what is shown in the two figures. For this discussion we will take the two parallel plates

case and for the present discussion, we will consider the space within the two plates to be

filled with gas. That will help us for easier discussion and that is why it is shown in green

color.

Now, what happens in the case of a molecular momentum transport, the molecules in the

bottom layer will have a higher velocity higher x momentum, molecules in the above layer

will have a lower velocity lower x momentum. And, hence x momentum is transported in the

y direction. Molecular x momentum is transported in the y direction because of the random

motion of the molecules. 

Analogously  in  heat  transfer,  the  molecules  at  the  bottom  layer  will  have  a  higher

temperature which means they have a higher internal energy. The molecules in the above

layer will have a lower temperature or lower internal energy. Now, because of molecular

motion, internal energy gets transported from the molecules in the bottom layer to molecules

in the layer above and that is what we call as heat. 



So, in the first case molecular momentum flux x molecular momentum flux gets transported

in the y direction, from a region of high velocity to a region of low velocity. In the second

case heat  flux gets transported from a region of higher  temperature  to a region of lower

temperature. So, in terms of molecular mechanism also they are analogous.
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Now,  having  said  they  are  analogous,  let  us  compare  the  3  dimensional  Newton’s  law

viscosity and the Fourier’s law of heat conduction. So, let us write down the Newton’s law of

viscosity of course,  now we have to write six equations there are six components of the

molecular  momentum flux tensor.  So, we will  have to write all  the six equations  for the

Newton’s law of viscosity.

τ xx=−2 μ
∂v x
∂ x

;τ xy=τ yx=−μ (
∂v y
∂ x

+
∂ vx
∂ y )

τ yy=−2μ
∂v y
∂ y

; τ yz=τ zy=−μ(
∂ vz
∂ y

+
∂ v y
∂ z )

τ zz=−2μ
∂v z
∂z
; τ zx=τ xz=−μ (

∂v x
∂ z

+
∂ vz
∂ x )

Once again, we are interpreting in terms of molecular momentum flux. And objective is to

find out whether they are similar or not? Just like we did for the one dimensional case now,



let  us write down the Fourier’s  law of heat conduction once again the three dimensional

version. Now, we will have to write three equestrians one for each direction. 

qx=−k ∂T
∂ x
;q y=−k ∂T

∂ y
;qz=−k ∂T

∂ z

Now,  very  clear  even the  way I  started  and the  way in  which  I  explained  they  are  not

analogous. I said write six equations there write three equations here they are not analogous.

There are they are different why is it so? 

Heat as we know it is a scalar, but molecular momentum is a vector. Heat flux is a vector,

molecular momentum flux is a tensor. So, there is one tensorial order of difference. So, in this

sense molecular transport of momentum and heat are not mathematically analogous. So, the

strict analogy is applicable only for the simpler one dimensional case. If you go to the three

dimensional case, the mathematical analogy breaks down. In one case you have scalar and

then vector for the case of heat for the case of momentum it is vector and then tensor. So,

they are not mathematically analogous.
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So, let us go back to our differential energy balance equation, where we left a few slides

back. 

ρ cp
DT
Dt

=−(
∂ qx
∂ x

+
∂qx
∂ y

+
∂qx
∂ z )−(

∂ ln ⁡(ρ)
∂ ln ⁡(T ) )p

Dp
Dt



The left hand side in terms of the substantial derivative of temperature right hand side was in

terms of the components of the heat flux vector. And that is where we said need to close the

system  of  equations,  which  means  that  we  need  to  express  the  heat  flux  in  terms  of

temperature, we know now it is in terms of temperature gradient and that is what we have

done now using the Fourier’s law of heat conduction. 

So, let us write down the Fourier’s law of heat conduction, the three dimensional version and

then we will have to just substitute in the above equation. 

qx=−k
∂T
∂ x
;q y=−k

∂T
∂ y

;qz=−k
∂T
∂ z

And, this is system of equation now becomes closed. So, let us do that 

ρ cp
DT
Dt

=[ ∂∂ x (k ∂T∂x )+ ∂
∂ y (k ∂T∂ y )+ ∂

∂ z (k
∂T
∂ z )]−(

∂ ln ⁡(ρ)
∂ ln ⁡(T ) )p

Dp
Dt

What is the big change that has happened? In this equation it was in terms of heat flux.

Unmeasurable unknown, but now I have expressed that in terms of the temperature which is a

measurable  variable.  So,  this  equation  is  also  a  differential  energy  balance  equation  for

temperature,  where  right  hand  side  now  has  been  completely  expressed  in  terms  of

measurables.


