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Now, let us proceed to the derivation of the difference energy balance equation, in terms of

enthalpy and then later on in terms of temperature. Now, we start with the relationship from

thermodynamics. This is a well-known relationship, which relates enthalpy to internal energy,

ĥ=û+p v̂=û+
p
ρ

I like to mention  ĥ represents specific enthalpy. So, it  is on a unit  mass basis of course,

internal energy û, we know it is per unit mass and then pressure and volume v̂ is also per unit

mass basis.

What we will do is express this relationship in terms of substantial derivative or saying it the

other way. We take the substantial derivative of this equation, both on the left hand side and

the right hand side, that is what you have done here 

ρ D ĥ
Dt

=ρ Dû
Dt

+ρ D
Dt (

p
ρ )



These two terms are simple, let us see how to evaluate the last term. Just use product rule. So,

ρ
D ĥ
Dt

=ρ
Dû
Dt

+
ρ
ρ

Dp
Dt

+
ρp

ρ2 (
−Dρ
Dt )

Now, to proceed further we will use the equation of continuity from a material particle view

point, 

Dρ
Dt

=−ρ (∇ . v )=−ρ(
∂ vx

∂ x
+
∂v y

∂ y
+
∂ vz

∂ z )

So, we will substitute for 
Dρ
Dt

, in this last term. So, I have got 

ρp

ρ2 (
−Dρ
Dt )=p(

∂ vx

∂ x
+
∂v y

∂ y
+
∂ vz

∂ z )

So, let us substitute in this equation, 

ρ
D ĥ
Dt

=ρ
Dû
Dt

+
Dp
Dt

+ p(
∂ vx

∂ x
+

∂v y

∂ y
+
∂ vz

∂ z )
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So,  let  us  write  down  the  equation  which  are  derived  for  the  substantial  derivative  of

enthalpy. 



ρ
D ĥ
Dt

=ρ
Dû
Dt

+
Dp
Dt

+ p(
∂ vx

∂ x
+

∂v y

∂ y
+
∂ vz

∂ z )

Now, we have already derived the differential energy balance equation for internal energy

and that is what is being written now. 

ρ
D (û )

Dt
=−(

∂qx

∂ x
+
∂ qx

∂ y
+
∂qx

∂z )− p[ ∂ (v x )

∂ x
+
∂ (v y )

∂ y
+

∂ ( vz )

∂ z ]
So, that we can substitute this on the right hand side so, let us substitute 

ρ
D ĥ
Dt

=−(
∂qx

∂ x
+
∂qx

∂ y
+
∂q x

∂ z )−p [ ∂ (v x )

∂ x
+
∂ (v y )

∂ y
+

∂ (vz )

∂ z ]+ Dp
Dt

+p (
∂v x

∂ x
+
∂ v y

∂ y
+
∂v z

∂z )

And, the two terms cancel each other, leaving us with 

ρ
D ĥ
Dt

=−(
∂qx

∂ x
+
∂qx

∂ y
+
∂q x

∂ z )+ Dp
Dt

The first time we are coming across substantial derivative of pressure. Also like to mention,

we discussed about substantial derivative in the very beginning of the course. There it would

have appeared as if we are suddenly discussing a new derivative of course, we discuss the

physical significance but, now look at the utility of that substance derivative.

We are using the substance derivative  very frequently especially  in the derivation of the

difference  energy balance  equation.  Not  alone that  when we introduce  we said,  we have

substantial derivative of velocity, temperature, concentration etcetera. But, now look at the

derivations we have substance derivative of all the energy terms, we have for internal energy,

we have for enthalpy, we have also got for a pressure.

So, significance is same the variable  for which the substance derivative is expressed that

changes.  So,  it  does have wide application,  in terms of derivation and the corresponding

physical  significance.  So,  now, we will  be  really  convinced  the  discussion  on substance

derivative in the beginning part of the course.



We have been looking at limited scope; you have come across only  
D
Dt

 of density for the

continuity equation, 
D
Dt

 of velocity, we have come across. But, now the derivation of energy

balance, we have come across substantial derivative of different variables energy, pressure

etcetera.
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Now, we are towards the last step, we are going to express the energy balance equation in

terms of temperature.  Let us do that once again, we are going to use the thermodynamic

relationship.  What  is  that?  From thermodynamics  we  know  that  for  a  pure  species,  the

enthalpy is a function of temperature and pressure, ĥ (T , p). 

d ĥ=c p dT+[ v̂−T ( ∂ v̂
∂T )

p]dp

And this equation, we will derive in a thermodynamics course when we derive, when we

discuss  fundamental  property  relations,  where  we discuss  Maxwell  relations  etcetera,  we

discuss this derive this relationship.

What does it tell you? It relates the differential change in enthalpy, to the differential change

in temperature and the differential change in pressure. What is utility? This expression can be

used to find out change in enthalpy, if you are given change in temperature and pressure, that



is  a  use  of  this  equation.  Now,  once  again  we  will  express  this  equation  in  terms  of

substantial derivative, let us do that and multiplied by density.

ρ
D ĥ
Dt

=ρc p

DT
Dt

+ρ[ 1ρ−T ( ∂(
1
ρ )

∂T
)
p
] Dp
Dt

So, the thermodynamic  relationship  has been expressed in  terms of substantial  derivative

number 1, number 2 the specific volume has been expressed in terms of density, we have

multiplied  by  density  both  the  left  and  right  hand  side.  Now,  let  us  take  the  last  term

multiplied by rho and simplify that. So, we have got 

−ρT ( ∂(
1
ρ )

∂T
)
p

=
ρT

ρ2 ( ∂ ρ
∂T )

p

=(
∂ ρ
ρ

∂T
T

)
p

=(
∂ ln ⁡( ρ)
∂ ln ⁡(T ) )p

So, this term tells about term effect of temperature on density but, it is not  
∂ ρ
∂T

 tells about

change in ln ⁡(ρ) for change in ln ⁡(T ). Now, let us substitute that in this equation, left hand

side we have rho substantial derivative of enthalpy.

ρ
D ĥ
Dt

=ρc p
DT
Dt

+[1+(
∂ ln ⁡(ρ)

∂ ln ⁡(T ))p]
Dp
Dt

The previous step we have derived the energy balance equation in terms of enthalpy. 

ρ
D ĥ
Dt

=−(
∂qx

∂ x
+
∂qx

∂ y
+
∂q x

∂ z )+ Dp
Dt

So, in the left hand side, we will substitute the substantial derivative of enthalpy, in terms of a

the thermodynamics relationship, which we have seen now and that is what we will do now.

ρ cp
DT
Dt

+[1+(
∂ ln ⁡(ρ)

∂ ln ⁡(T ) )p]
Dp
Dt

=−(
∂qx

∂ x
+

∂qx

∂ y
+
∂ qx

∂ z )+ Dp
Dt
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Now, let us simplify this and just rewriting the same equation here that is a left hand side and

that is a right hand side. The right hand side is same as what we have seen earlier, in the

differential energy balance equation for enthalpy. 

ρ cp

DT
Dt

+
Dp
Dt

+( ∂ ln ⁡(ρ)

∂ ln ⁡(T ))p

Dp
Dt

=−(
∂qx

∂ x
+

∂qx

∂ y
+
∂qx

∂ z )+ Dp
Dt

So, now, 
Dp
Dt

 cancels on both sides and then we will express the equation in terms of 
DT
Dt

 that

has been our long standing objective. To get a differential energy balance equation in terms

of temperature, that is what we have done sequentially.

ρ cp
DT
Dt

=−(
∂ qx

∂ x
+
∂qx

∂ y
+

∂qx

∂ z )−( ∂ ln ⁡(ρ)
∂ ln ⁡(T ) )p

Dp
Dt

Also like to mention, this C p is in terms of mass units, is on a mass basis. So, it is SI unit is

Joule per kg per Kelvin.

Let  us  expand  the  substantial  derivative,  we  already  have  derived  the  energy  balance

equation, we will by expanding the substantial derivative, we have the local term and the

convection term. 



ρ cp( ∂T
∂t

+vx

∂T
∂x

+v y

∂T
∂ y

+v z

∂T
∂ z )=−(

∂q x

∂ x
+
∂qx

∂ y
+
∂qx

∂ z )−(
∂ ln ⁡(ρ)
∂ ln ⁡(T ) )p

Dp
Dt

When we first  time,  when we introduce  substantial  derivative,  we discussed in  terms  of

velocity and in terms of temperature. Now, you really seen application or you have seen a

conservation equation, where the 
DT
Dt

 occurs. 

Of course, you can also put an vector notation. So, 

ρ cp( ∂T
∂ t

+v .∇ T )=−∇ . q−( ∂ ln ⁡(ρ)

∂ ln ⁡(T ))p

Dp
Dt

So, we have finally, achieved our objective of deriving a differential energy balance equation,

in terms of temperature. Now, we are in a situation similar to what we were after deriving the

linear momentum balance equation, what is that situation let us see.
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Let  us have a recall  slide.  This is  the slide which we discussed after deriving the linear

momentum  balance  equation,  we  listed  the  continuity  equation,  we  listed  all  the  linear

momentum balance equations in the three directions. We also express the equation of state as

density as a function of pressure and temperature.



Then,  we did  a  degree  of  freedom analysis,  listed  the  number  of  independent  variables,

density is 1 variable, velocity components is 3 variables, pressure is 1 variable and then we

have 6 independent components of the viscous stress tensor. So, they are another 6 variables

and  gave  as  11  independent  variables.  Number  of  equations  1  mass  balance,  3  linear

momentum balance, 1 equation of state and which was number of equations was 5.

So, when you subtract we were left with 6 degrees of freedom (DOF = 11 – 5 = 6) and we

concluded that the components of the viscous stress is are unknowns and to close the system

of equations. We need to express those components in terms of velocity; velocity gradients

and we call this as a closure problem. Now, we are exactly in the same situation now, later

on,  when  we started  the  transfer  phenomena  part  of  the  course.  And,  and we discussed

momentum transport, we interpreted τ as molecular momentum flux.

So, if you want to restate this from that view point, we can say that need to express molecular

momentum flux, in terms of velocity gradients, both are two different viewpoints. The second

view point will be more useful because, we are discussing about heat flux.
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Now, we are in the similar situation now, let us see why is it. So, let us list down all the

conservation equations, which are derived so far. We will express from a material particle

view point. 



Dρ
Dt

=
∂ ρ
∂ t

+vx

∂ ρ
∂ x

+v y

∂ ρ
∂ y

+vz

∂ ρ
∂ z

=−ρ(
∂ vx

∂ x
+
∂v y

∂ y
+
∂ vz

∂ z )

ρ
D v x

Dt
=ρ[ ∂v x

∂ t
+v x

∂v x

∂x
+v y

∂ vx

∂ y
+v z

∂ vx

∂ z ]=ρ gx−
∂ p
∂ x

+μ ( ∂
2 vx

∂ x2
+

∂2 vx

∂ y2
+

∂2 vx

∂ z2 )

ρ
D v y

Dt
=ρ[ ∂v y

∂ t
+vx

∂ v y

∂ x
+v y

∂v y

∂ y
+vz

∂v y

∂ z ]=ρ g y−
∂ p
∂ y

+μ ( ∂
2 v y

∂ x2
+
∂2 v y

∂ y2
+
∂2v y

∂ z2 )

ρ
D v z

Dt
=ρ [ ∂ vz

∂ t
+vx

∂ vz

∂ x
+v y

∂ vz

∂ y
+vz

∂v z

∂ z ]=ρ gz−
∂ p
∂ z

+μ ( ∂
2 vz

∂ x2
+

∂2 vz

∂ y2
+
∂2 v z

∂ z2 )

So, that is the equation of continuity, the linear momentum balance equation in the x, y, z

direction, written in terms of substantial derivative number 1, number 2 right hand side, I

have already substituted for the viscous stresses or the molecular momentum flux using the

Newton’s law of viscosity.

And, so what is shown here is the Navier-Stokes equation, not the linear momentum balance

equation. And, that is the energy balance equation which you derived just now in terms of

temperature; 

ρ cp
DT
Dt

=ρ c p( ∂T∂t
+v x

∂T
∂ x

+v y
∂T
∂ y

+vz
∂T
∂ z )=−(

∂qx

∂ x
+
∂ qx

∂ y
+
∂qx

∂ z )−( ∂ ln ⁡(ρ)

∂ ln ⁡(T ) )p
Dp
Dt

We also require an equation of state expressing ρ in terms of pressure and temperature. 

ρ=ρ ( p ,T )=
pM
RT

So, these are all the equations which we have now. Let us do a degree of freedom analysis,

what are the number of independent variables, like earlier we have 

No of independent variables=1 ( ρ )+3 (v )+1 ( p )+1 (T )+1 (q )=9

ρ as 1 variable, 3 velocity components adds to 3 variables, pressure is 1 variable. Earlier we

had the tau by 6 variable because, I have expressed in terms of the Newton’s law of viscosity,

they are not the variables now. And, what are the other variables, the energy balance has

temperature unit so, that is another variable. Energy balance has these components of heat



flux  vector  due  to  conduction  and  they  add  3  components  qx,  q y,  qz,  resulting  in  9

independent variables.

No of equations=1 (MB )+3 (NS )+1 ( EB )+1 ( EoS )=6

What are the number of equations? 1 mass balance, 3 Navier-Stokes equation ok, not linear

momentum balance equation, we have already substituted the Newton’s law of viscosity. 1

energy balance  equation,  1  equation  of  state,  resulting  in  6 number of  equations.  Let  us

subtract find the degree of freedom it is 

DOF=9−6=3

Which means that; the 3 variables are unknown, what are the 3 variables. The components of

heat flux vector in the x, y, z direction are the unknown variables, qx, q y, qz.

So, analogous statement just like we saw in the previous slide, what is that need to express

the heat flux in terms of temperature, temperature gradient. That is why I said in the previous

slide, the interpretation of τ in terms of molecular momentum flux is more useful now. And,

we said molecular momentum flux has to be expressed in terms of velocity, velocity gradient,

analogous statement now is need to express heat flux in terms of temperature, temperature

gradient so, very much analogous.
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Let us summarize what we have discussed so far. We have derived the differential energy

balance equation through a series of stages, first we expressed in terms of internal energy,

plus kinetic energy, plus potential energy, which is what we discussed in the previous lecture.

In this lecture, we took the effect of gravity from potential energy on the left hand side to

work done on the right hand side.

So, that we could get a differential energy balance equation in terms of internal energy and

kinetic  energy,  independently  we  derived  an  equation  for  kinetic  energy  from  linear

momentum balance  equation.  Subtracted  these  two and got  a  differential  energy balance

equation  for  internal  energy.  Used  equation  use  thermodynamics  relationship  between

internal energy and enthalpy and got equation for enthalpy.

And,  then  once  again  used  the  thermodynamics  relationship  between  enthalpy  and

temperature and pressure and finally, arrived at the equation finally, arrived at the differential

energy balance equation in terms of temperature. Towards end the closure problem, what is

that need to relate heat flux to temperature, temperature gradient.


