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We have got one equation the Differential Energy Balance equation for internal energy and

kinetic energy. What will now do is we will derive a separate differential energy balance

equation for kinetic energy. That so that we can subtract that equation from this equation and.

So, we are proceeding towards deriving a differential  energy balance equation for kinetic

energy. I said separate equation the reason is that, this equation I would say comes parallelly

not sequentially from the previous equation.

Which means  that, the starting  point for this equation is different. The starting point is the

linear momentum balance. So, let us write the x component of the linear momentum balance

equation.  And let  us  see,  how do we derive  their  differential  energy balance  for  kinetic

energy from the linear momentum balance equation.
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So, that is the linear momentum balance equation in the x direction; that transient term, the

convection term. And, then we have the body first term, surface force due to pressure and

viscous stresses. Now, as I told you the derivation of differential energy balance equation is

easier,  if we express the equations in terms of substantial  derivative or from the material

particle viewpoint. So, we will express the left hand side in terms of the substantial derivative

of velocity multiply by density, which we have already done, right hand side remains same.

ρ
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∂ p
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+
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So, linear momentum balance equation form a Eulerian view point. This is from a Lagrangian

view point.  We have just  now discuss that we have neglected the work done by viscous

forces. So, in the linear momentum balance equation also to proceed further, we will neglect

the viscous force on the right hand side. And keep only the body force and the surface force

due to pressure. So, that it is in line with our assumption.

So, let us write down that linear momentum balance equation, excluding the viscous forces

on the right hand side and that is nothing, but our Euler equation. 

ρ
D v x
Dt

=ρ gx−
∂ p
∂ x

So,  we have  taken  the  linear  momentum balance  equation  expressed  in  material  particle

viewpoint, neglected viscous forces and we have got the Euler equation. Now, what we will

do is multiply by vx on both sides we will understand why do we do that shortly. So, we have 

vx ρ
D v x
Dt

=vx ρgx−v x
∂ p
∂ x

Now, the left hand side of this equation can be expressed as 

ρ
D ( v x

2

2 )
Dt

=vx ρgx−v x
∂ p
∂ x

So, when you multiply the equation by vx on both sides, the left hand side can be expressed

as shown  above.  Now,  let  us  repeat  the  exercise  for  the  y  direction  and  z  direction,

multiplying by the respective velocity components. So,



ρ
D ( v y

2

2 )
Dt

=v y ρ g y−v y
∂ p
∂ y

Similarly the z direction as well, 

ρ

D ( v z
2

2 )
Dt

=v z ρ gz−v z
∂ p
∂ z

So, it is multiplied by respective velocities. 
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So, now let us write down the equations, which you have derived in the previous slide in all

the three directions. 

ρ
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2

2 )
Dt
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2
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ρ
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2

2 )
Dt

=v z ρ gz−v z
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Now, you can only start recognizing that 
v x
2

2
 is one part of the kinetic energy. So, if you sum

all this equations what we have is 
v x
2

2
+
v y
2

2
+
v z
2

2
 which is nothing, but v

2

2
; we have a half there.

So, its means we have got the kinetic energy on the left hand side. That is why, we multiplied

every we multiplied each equation with the respective to velocity component.

So, if you sum the left hand side becomes 

ρ
D ( v

2

2 )
Dt

=ρ(gx vx+gy v y+gz v z)−(vx ∂ p∂ x +v y
∂ p
∂ y

+vz
∂ p
∂ z )

That is what our objective was. Our objective was to get a separate equation for the kinetic

energy and so we have got a now a differential energy balance equation for kinetic energy.

Now, to proceed further and to make our derivation convenient, we will take this term and

express as a sum of two terms. What do we do? Take the last term in right hand side and we

will express in a form which will be convenient for further steps in the derivation. Let us do

that and then I will explain what is that we have done.
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Of course should be obvious to you should look at it. What is that we have done now? Use

the product rule, how to use the product rule? We know that 

∂ ( pv x )
∂ x

= p
∂ (v x )
∂ x

+v x
∂ ( p )

∂ x



What we have on the left hand side is vx
∂ ( p )

∂ x
. This is the term on the left hand side and that

we expressed as 

vx
∂ ( p )

∂ x
=
∂ ( p vx )

∂x
−p

∂ (v x )

∂ x

That is all we have done. And similarly y direction; similarly z direction and now, we have

grouped the terms here and then grouped rests  of the terms as a second term. So, let  us

substitute them back here of course, we have minus here. 

ρ
D ( v

2

2 )
Dt

=ρ (gx v x+g y v y+gz vz )−[ ∂ ( p vx )
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+
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So, left hand side is of course same, right hand side first term is same but right hand side

instead of second term, we have now got two set of terms. So, just substituting this on the

right hand side of the this equation.

So, now this is the differential energy balance equation for kinetic energy. Now, what we will

do is look at the physical significance of each of the terms here. 
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To help us to look at the physical significance of each term we will re-express this from a

Eulerian view point just to help us a recall slide which we just now did. 



∂( ρe)
∂ t

+
∂( ρv xe)

∂x
+
∂(ρ v y e)

∂ y
+
∂(ρv z e)

∂ z
=−(
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+
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∂ y

+
∂qx
∂ z )−( ∂( p vx)∂ x

+
∂( p v y)

∂ y
+
∂( p vz)

∂ z )

What we did was, we had derived the differential energy balance from a control volume point

of view or a Eulerian point of view. 

ρ
De
Dt

=−(
∂ qx
∂ x

+
∂qx
∂ y

+
∂qx
∂ z )−(

∂( p vx)

∂ x
+
∂( p v y)

∂ y
+
∂( p vz)

∂ z )

So, now the left hand side was from a Eulerian point of view, we did a series of steps and

expressed in terms of the substantial derivative. The situation what we have right now is the

reverse of that, we have already the differential energy balance equation, the left side of that

in terms of substantial derivative. So, we like to go back here and express in terms of the

Eulerian view point.
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So, let us look at the next slide then you will understand. 

ρ

D ( v
2

2 )
Dt

=ρ (gx v x+g y v y+gz vz )−[ ∂ ( p vx )

∂ x
+
∂ ( p v y )

∂ y
+
∂ ( p vz )
∂ z ]+ p[ ∂ (vx )

∂ x
+
∂ ( v y )

∂ y
+
∂ (v z )
∂ z ]

That is the differential energy balance equation for kinetic energy, the left hand side is in

terms of the substance derivative. We expresses the left hand side in terms of the transient

and then the convection terms. 
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∂(ρ vz v
2

2 )
∂ z

=ρ (gx v x+g y v y+gz vz )−[ ∂ ( p vx )
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That is a transient term and then the convection term. So, this equation the first equation is

from a material particle viewpoint a Lagrangian viewpoint. 

Second equation which is being written now is in terms of the Eulerian viewpoint. What is

that we have done I like to quickly repeat it. We have got the equation for kinetic energy with

the left hand side in terms of substantial derivative. What we are doing right now is just to get

a  physical  interpretation  for  the for this  differential  energy balance  equation that  is  only

objective.

Now, earlier when we did for the total energy balance equation, the left hand side was from a

Eulerian point of view. We express that in terms of Lagrangian point of view. What did what

is that we have right now? We have already the substance derivative of kinetic energy per

unit mass, we like to express back in this form.

This once again I want to emphasis, this is done just to look at the physical significance of all

the  terms  in  the  different  energy balance  equation  for  kinetic  energy.  We will  not  carry

forward derivation using this form of the equation. As I told you, the convenient form for

derivation is only the Lagrangian form of equation. 

Now, look at the significance of each term left hand side the terms are familiar to us. It is

time rate of change of kinetic energy per unit volume. We have come across earlier mass,

momentum then total energy. Now, we have come across kinetic energy. 

What  is  the  next  set  of  three  terms  represent?  They  are  the  convection  terms.  So,  they

represent net rate of flow of kinetic energy out by convection per unit volume. We have seen

this earlier  for mass, momentum total  energy now analogous meaning for kinetic  energy.

Now, let us look at the right hand side, we have already seen the significance of this in detail;

tells rate of work done on fluid by gravitational force per unit volume. Now, we have also

seen the significance of the second last term that is net rate of work done on fluid by pressure

process per unit volume. 

Now the last  term is  something  which  we have not  come across,  we will  just  write  the

significance and then few slides later we will justify the significances. It just tells you that



rate of conversion of kinetic energy into internal per unit volume. We will few slides later we

will  discuss,  why  this  term represents  this  physical  significance  which  is  conversion  of

kinetic energy into internal energy.

What this equation tells you that the kinetic energy can change because of all these factors.

That  is  the  overall  concept  which  we can take  from this  equation.  So,  the terms are all

analogous to any conservation equation, the transient term, the convection term on the left

hand side and then we have rate of work done by gravitational force, pressure force and there

is a term which tells about the conversion of kinetic energy to internal energy, which we will

discuss little later.
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We have derived equation for internal energy and kinetic energy, which we derived from the

total  energy  balance.  And  starting  from the  linear  momentum balance,  we have  derived

equation for kinetic energy. So, now, becomes very simple for us to almost write down the

energy balance equation for internal energy.

So, let us do that here simple subtraction. So, we are back to the Lagrangian viewpoint. 

ρ

D (û+ v
2

2 )
Dt

=−(
∂qx
∂ x

+
∂qx
∂ y

+
∂qx
∂ z )−(

∂ (p v x )
∂ x

+
∂ (p v y )

∂ y
+
∂ (p vz )
∂ z )+ρ(gxv x+g y v y+gz vz)



So, all our left hand sides once again will be in terms of 
D
Dt

. Only just two slides in between

to discuss the significance of different terms in the kinetic energy equation, we went back to

the Eulerian description ok. That is the differential energy balance equation for internal and

kinetic energy.

ρ

D ( v
2

2 )
Dt

=ρ(gx vx+gy v y+gz v z)−(vx ∂ p∂ x +v y
∂ p
∂ y

+vz
∂ p
∂ z )

And this is the equation which we obtained for the kinetic energy from the linear momentum

balance equation. And then we took the last term and expressed as sum of two sets of terms.

And now, we will understand why we really did that. 

ρ

D ( v
2

2 )
Dt

=ρ (gx v x+g y v y+gz vz )−[ ∂ ( p vx )

∂ x
+
∂ ( p v y )

∂ y
+
∂ ( p vz )
∂ z ]+ p[ ∂ (vx )

∂ x
+
∂ ( v y )

∂ y
+
∂ (v z )
∂ z ]

So, let us subtract this equation from this equation, the equation for kinetic energy from the

equation for internal and kinetic energy. 

ρ
D (û )

Dt
=−(

∂qx
∂ x

+
∂ qx
∂ y

+
∂qx
∂z )− p[ ∂ (v x )

∂ x
+
∂ (v y )

∂ y
+
∂( vz )

∂ z ]
And so the left hand side we will be left out with the substantial derivative of internal energy

of course, multiplied by density.  So, now we have got a very simple equation. 
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Now, let us look at the significance of the different terms in this energy balance equation for

internal energy. 

ρ
D (û )

Dt
=−(

∂qx
∂ x

+
∂ qx
∂ y

+
∂qx
∂z )− p[ ∂ (v x )

∂ x
+
∂ (v y )

∂ y
+
∂ ( vz )

∂ z ]
Like we did for  kinetic  energy,  we will  express  the left  hand side back in  terms of  the

Eulerian viewpoint. So, that we can explain the significance of each term, with this also we

can  explain  you put  in  this  form because  we have  explained  the  significance  of  all  the

conservation  equations  earlier  in  this  form  only  that  is  why  to  be  in  line  with  those

explanations, we are expressing the left hand side or the entire equation back in Eulerian

form.

∂ ( ρ û )

∂ t
+
∂ (ρ vx û )

∂ x
+
∂ (ρv y û )

∂ y
+
∂ (ρv z û )

∂ z
=−(

∂qx
∂ x

+
∂qx
∂ y

+
∂q x
∂ z )− p [ ∂ (v x )

∂ x
+
∂ (v y )

∂ y
+
∂ (v z)

∂ z ]
So,  now,  let  us  take  the  left  hand  side  I  think  you  should  be  able  to  write  down  the

significance now very easily. First terms tells about time rate of change of internal energy per

unit volume. Next set of three terms represent convection. So, net rate of flow of internal

energy out by convection per unit volume. Right hand side, we are familiar with this term.

Net rate of internal energy addition by conduction; what it tells you is because of conduction

there is increase in internal energy.



Or because of heat input there is increase in internal energy that is very much understandable.

Now, let  us come to the last  term which requires some discussion.  You also discuss the

importance of this term here and in the kinetic energy equation. What this tells you if you

read this significance rate of internal energy increase by compression per unit volume. How

do you explain this? For that, we know this term as 
∂ (v x )

∂ x
+
∂ (v y )

∂ y
+
∂ (vz )

∂ z
=∇ . v , but remember

we also discuss this as a volumetric strain rate.

What does it tell you? Fractional rate of change of volume; so now, let us say there is a

decrease in volume what happens this term is negative and this will become positive and that

will result in an increase in internal energy that is what this tell you. When you say there is

decrease in volume it is which means that we have compression. So, rate of internal energy

increase by compression of course per unit volume.

So,  just  to  repeat  the last  three  terms put  together  represent  fractional  rate  of  change of

volume. And if there is compression there is decrease in volume that term is negative. So, the

entire term becomes positive, it adds to the internal energy and that is why this term tells you

rate of internal energy increase by compression per unit volume.

Now, let us look at the corresponding term in the kinetic energy equation, if you look at the

two terms here. Here it is −p(∇ . v) and here it is − p(−∇ . v ). Let us take the same case. Let

us say there is decrease in volume  ∇ . v term is negative this entire term is positive. Now,

what will happen in the right side of the kinetic energy equation it will be negative which

means that, the increase in internal energy is because of decrease in the kinetic energy that

compression adds to the right hand side of the internal energy equation. 

It results in subtraction in the right hand side of kinetic energy equation, which means that

there is a conversion of kinetic energy to internal energy. Now, not alone this the other way

can also happen. What is that? Let us say there is expansion. What will happen? This  ∇ . v

will be positive. So, the whole term will be negative in the internal energy equation. So, it

will result in reduction in internal energy correspondingly there will be increase in the kinetic

energy.  So,  now, this  term becomes  very clear  rate  of  conversion  of  kinetic  energy into

internal energy per unit volume.



We can explain the significance only after deriving the equation for internal energy that is

why we postponed the explanation for that particular term. Also like to mention that because

you can have either compression or expansion and so there could be conversion; conversion

of these two energies in both the directions. That is what we have seeing. It could be internal

energy to kinetic energy or it could be kinetic energy internal energy.

So, more formally we call this as reversible conversion of kinetic energy to internal energy.

So, what you have seen now is arrived at the differential energy balance equation for internal

energy, express that in Eulerian form and then looked at  the significance of the different

terms in that equation for internal energy. And, also specifically one term which appears in

the internal  energy equation and the kinetic energy equation with opposite sign, we have

discussed the physical significance of that term as well.


