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We are deriving the Differential Energy Balance equation. We have derived the differential

energy balance equation in terms of total energy. We started with the integral energy balance

equation and obtained the differential energy balance equation in terms of total energy. We

also looked at how to express the rate of heat in term; rate of work done term, in the energy

balance equation.

So, we proceed now to express the differential energy balance equation in other forms and

finally, we have to express in terms of temperature. So, we will be sequentially deriving the

energy balance equation in terms of these variables.
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Now, to proceed further to help us to express the energy balance in terms of these variables, it

will be convenient for us if we express the differential total energy balance which we have

derived from a material particle viewpoint and that is what we will do now. So, that all the

further  derivations  will  become easier  for us.  So,  let  us write  down the differential  total

energy balance equation, which are derived in the previous lecture. 
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You have the transient term, the convection term and then we have the rate of heat input term

and then rate of work done by the pressure forces. This is not new to us; we have already

done a similar exercise, when we derived the continuity equation and the linear momentum

balance equation from a material particle viewpoint. So, let us quickly do that, it requires re-

expression of the left hand side of the above equation. We expand all the derivatives using

product rule.
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Now, let us group the terms together,
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Now, if you look at the terms within the second square bracket, we can easily identify that it

is an equation of continuity and hence it goes to 0. 
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So, the second term drops off and now, if you look at the first term, we can easily identify

that it is the substantial derivative of total energy. So, let us express that, the temporal term

and the convection term. So, a left hand side becomes 
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So, the left hand side of this equation, 
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This equation tells you the rate of change of total energy, if you follow a fluid particle and

that is the term on the left hand side of course, multiply by density and right hand side we

have net rate of heat input and net rate of work done. So, this expression was derived from a

control  volume  point  of  view  or  Eulerian  point  of  view.  We  have  expressed  the  same

equation from a Lagrangian point of view. 

We express this for two reasons; one reason is that the further derivations will be easy, if we

express the energy balance equation from a material particle viewpoint. Other use is that, the

usual the form in with the conservation equations are used are usually in the material particle

viewpoint.  And,  anyway  we  have  done  this  for  the  differential  mass  balance  and  the

momentum balance. So, analogously I have done for the differential total energy balance as

well. So, let us proceed further.
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So, next step is to derive the differential energy balance equation in terms of internal and

kinetic energy. What are the starting point? The starting point of the equation which are seen

in the previous slide, expressing the differential energy balance in terms of total energy 
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This  is  the equation which we have seen and as I  said we have written from a material

particle viewpoint. Let us expand e, what does e tell us e tells us? The total energy per unit

mass, which is sum of the internal energy per unit mass, the kinetic energy per unit mass and

the potential energy per unit mass.
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So, what we have done is just substituted for e in terms of the individual energy components.

Reason is, we want separate out the gravitational part from this or the potential entity part

from this.  Now to proceed further,  we will  have to discuss the coordinate  axis.  We will



choose the coordinate axis, where y is along the horizontal direction, z is along the vertical

direction. 

So now, g acts towards the negative z axis and so we express the g vector as 
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Now, we will introduce the nomenclature for  gz, we will express  gz=φ remember  gz is a

scalar. So, this expression tells you that, the g=−∇ φ, whereφ=gz and we can easily identify

that it is the potential energy per unit mass.

g=−∇ φ

Now, let us discuss what this equation tells us. Now, if you look at this equation left hand

side  we have  gravitational  force  and  right  hand  side  we have  the  gravitational  potential

energy of course, both are per unit mass. So, this equation relates two viewpoints of g. What

is one viewpoint? You view it as force per unit mass on the left hand side on the right hand

side;  we  view  it  as  a  potential  energy  per  unit  mass.  And  how  are  they  related?  The

gravitational forces is related to the minus of the gradient of the gravitational potential.

So, the main objective of this equation is to relate the two viewpoints of  g with one view

point; is we view g as a gravitational force per unit mass. We can also view g as gravitational

potential energy per unit mass and we are relating these two by this expression. So, we said,

we want to separate the effect of 
D ( gz )

Dt
 in the left hand side. So, let us evaluate that rho into

the substantial  derivative of  gz or  the substantial  derivative of the gravitational  potential.

Now, 
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Now, what do we do? We retain only the substantial derivative of internal energy and kinetic

energy on the left hand side. Take the substantial derivative of gravitational potential to the

right hand side and so what you get 
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So, what we have done is started with the differential energy balance equation expressed in

terms of total energy and then in the left hand side, we have the substantial derivative of the

gravitational potential that, we expressed in terms of  −ρ(g . v ) brought it to the right hand

side  and it  becomes  +ρ (g . v).  And now,  left  hand side  is  left  only  with  the  substantial

derivative of internal energy and the kinetic energy.
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So now, let us understand, what is the meaning of this term and that is what we are going to

discuss now. 

ρ ( g. v )=ρ(gxv x+g y v y+gz v z)

Now, we know that rate of work done is given by the dot product of force into the velocity

vector. 

Ẇ=F . v

So, if you compare these two expression, it is clear that this represents rate of work done, but

because  g is  force  per  unit  mass,  g. v represents  rate  of  work done per  unit  mass.  And



because, you are multiplying by density, we eventually get rate of work done by gravitational

force per unit volume and it is on the fluid.

So, the term ρ ( g. v ) on the right hand side represents rate of work done why is it? Because, it

is a dot product between a force vector and a velocity  vector,  but force is per unit mass

multiplied by density. So, it becomes rate of work done per unit volume and the work done

by the gravitational force on the fluid. So, let us see how do we justify that this is on the fluid

and by gravitational force. 

Let us take a small example, let us say you have a pipe and then water flows up through the

pipe that is what is shown here.  Now, when the water is flowing up through the pipe, let us

evaluate this term, the rate of work done by gravitational force 

ρ ( g. v )=ρ (−gk ) . ( vz k )=−ρgv

Because,  the fluid is  flowing up the velocity  is  vz into k vector.  So,  if  you take the dot

product, we get −ρgv where v is the magnitude of the velocity which means, it is negative

and which shows that work is done by the fluid against gravity which is what we expect.

When a fluid is flowing up through a pipe work is done by the fluid against gravity and that is

why, we said this term represents rate of work done on the fluid by gravitational force of

course, per unit volume. So, that is the significance of the term ρ (g . v).
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Now, also like to discuss one more aspect; regarding the gravity term, if you look at this what

we have done this? 
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Of course, this is the energy balance in terms of the total energy. 
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And, this we have seen in the previous two previous slide relating the substantial derivative

of the gravitational potential to −ρ(g . v ). 
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And, then we substituted here and then expressed in this form. What is that we have done, if

you look at this equation where we had substantial derivative of gravitational potential,  it

played the role of flow of potential energy.

So, when it was in the left hand side, it represented rate of flow of potential energy and it was

in the left hand side. Now, when it came on the right hand side, it represents rate of work

done by gravitational  force.  So,  now, two ways of  including the effect  of  gravity in  the

energy balance equation. When it is on the left hand side it is rate of flow of potential energy

why is it? We know that this represents convection term. 

We have seen convection for velocity,  convection for temperature similarly here we have

convection of potential energy. So, that is why, when it was on the left hand side it represents

rate of flow of potential energy. When we take it to the right side it becomes rate of work

done by gravitational force. So, two different viewpoints two different ways of including the

effect  of  gravity  in  the  energy balance  equation.  We started  with including  as  a  rate  of

potential energy, the reason is we started from the first law of thermodynamics, the law of

physics  where  left  hand  side  we  had all  the  energy  which  includes  internal  kinetic  and

potential energy.



Because, we started from that and from that we got the integral energy balance from that we

got the differential energy balance, the left hand side for us contained to begin with the effect

of gravity as a rate of potential  energy, but now, we are proceeding towards deriving an

equation for temperature. So, finally, only internal energy should be left out. So, at this stage,

we are taking out the effect of the potential energy. You are not removing it from the energy

balance, we are taking the effect from the left hand side and taking it to the right hand side

and the significance becomes rate of work done by gravitational force. That is what we have

done here conceptually.

So, that on the left hand said we are left out only with the internal energy and the kinetic

energy. That is the whole objective of this exercise. And remember, when we discussed the

differential energy balance in this form for the total energy, we said this represents rate of

heat  input  term and  this  represents  rate  of  work  done  by  pressure  and  we  said  we  are

neglecting rate of work done by the viscous stresses. Then we also said that there is no term

corresponding to the rate of work done by the gravitational force or the body force and then

we also said that that is hidden somewhere in the left hand side and now that is what we have

discussed now. Whatever is hidden on the left hand side, hidden I would say not as a work

done.

But as potential  energy or flow of potential  energy, now we have separated that  out and

brought to the right hand side. So now, if you look at the energy balance equation, this is the

rate  of  heat  input.  And now,  we have  one  term corresponding to  rate  of  work done by

pressure force. And we have another term corresponding to the rate of work done by the body

force or the gravitational force. Of course, there is no rate of work done term corresponding

to the viscous stresses to our level of discussion; a full complete derivation will include that

term as well.
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