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Having  looked  at  the  different  chemical  engineering  applications  of  differential  energy

balance, now let us starts deriving the differential energy balance.
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So, as usual we will start with the control volume in our familiar experimental setups. The

left hand side shows the flow through the pipe and the right hand side set up shows flow

through the tank. And, in the left hand side we have one inlet one outlet and in the case of the

tank we have two inlets and then one outlet.

Now, what  is  a  control  volume which  you should  imagine  over  which  you are  deriving

differential energy balance? In the case of the pipe and in the case of the tank we take a small

control volume inside that domain and that is what is shown by the yellow color region in

both the experimental  setups.  And, so these are our control  volumes,  they are inside the

domain it could be in the pipe, it could be in the tank.

And for this control volume, we are going to take into account the rate of change of energy,

energy flowing in flowing out and then heat added to the control volume, and then work done

on the control volume. So, in sense we are going to apply the integral energy balance for this

small control volume.
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So, let us start with the integral form of energy balance equation, this is what we have been

doing while deriving all the differential balance equations, we will start with the integral form

of the corresponding balance  equation.  So,  in  this  case  we are starting  with the integral

energy balance equation, so let us write down the integral energy balance equation.
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e=û+ v
2

2
+gz

The first term tells about the time rate of change of total energy, next term tells about the net

rate at which energy leaves through the control surface. And the terms of the right hand side

tell about net rate of heat addition, net rate of work done. Now, for a fixed control volume as

we are done earlier we will bring the time derivative inside the integral sign.
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And now, it should be written as a partial derivative; the reason is that when that derivative

was outside we integrated over the control volume. So, all the spatial variations have been

taken into account and then only time remained as the only independent variable.



So, we wrote it as, 
d
dt

, but now it is inside the integral sign ρ and e can vary with space, so

now both  spatial  variation  and time  variation  are  there.  And,  so  we represent  as  partial

derivative and the remaining terms are same. Now, we are going to apply this integral energy

balance equation for the control volume shown in the above slide image and how should we

imagine, as we are done earlier and as seen in the experimental setups.

We should imagine this control volume inside a pipe and inside a domain, and because of our

restriction to Cartesian coordinates we should imagine a pipe of rectangle cross section. Also

like to mention that this small control volume could be in a solid as well we are talking about

energy balance, so it could be let us say a conduction in a solid. So, this small control volume

could be inside a pipe where that is a flow taking place or it could be a solid. 

So, we are going to apply this differential energy balance for two examples, one for a solid

and one in a fluid domain. So, our objective in the next few slides is to apply this integral

energy balance equation for this small control volume.
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So, let us proceed that is the integral energy balance equation which we have seen in the

previous slide written for fixed control volume, 
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Now, let  us  take  term by term and apply for this  small  control  volume.  Let  us  take  the

transient term 

∫
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∂
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ρedV=
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As we have done earlier we will take an average value of ρ and e within the small control

volume. The control volume has dimensions of  ∆ x∆ y∆ z and, because we are taking on

average value it is a constant inside the control volume. So, 
∂
∂ t
ρe can be taken outside the

integral sign and then we are left with integral dV  over the control volume and the volume of

this control volume is, ∆ x∆ y∆ z.

And like to mention and specify that e here represents the total energy per unit mass which

includes the internal energy per unit mass, the kinetic energy per unit mass, and the potential

energy  per  unit  mass.  And then  like  all  the  other  differential  balance  equations  we will

finally, divide by ∆ x∆ y∆ z and shrink to a point. So, what we will do is divide now itself

and keep the terms ready, so that finally, we can substitute in the integral energy balance

equation and then take the limit finally.

∂( ρe)
∂ t

Now, let us proceed with the convection terms, 

∫
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Now, let us look at the significance once again. It represents net rate of flow of total energy

out through the control surface by convection. So, it tells about the rate of flow of energy and

it represents a net rate of flow of total energy out through the control surface by convection.

Now, many terms are very familiar  to  us,  we have looked at  this  several  times in while

deriving other conservation equations. Only difference is that now we are applying for total

energy, what this tells us about the flow of energy.

And, now let us look at the control volume, the arrows represent the flow of energy entering

and leaving to the respective faces. So, we have a six faces energy enters through the left



face, the bottom face, and the rear face and it leaves through the right face, the top face, and

the front face. And, now what we should do is express this integral expression for the six

faces let us do that. 

∫
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This has to be written for six faces, 3 outlet face, and 3 inlet face and for the outflow face v .n

is positive and that is way it is positive here. And, for the inflow faces v .n is negative and

that has been taken care by us explicitly. So, ∫
CS

ρev . ndA  has been expressed for the six faces

in this expression 3 outlet faces, 3 inlet faces. 

Now, what we will do is consider the faces pair wise and apply this expression here we are

considered the three outflow face and three inflow faces. So, we will take one outflow face,

one inflow face let us say the x direction and then see how to express that.
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Now, let us look at the two faces along the x direction that inflow face and the out flow face

that is the left face and the right face. Now, 

The rate of flow of total energy entering at x = ( ρv xe )∨¿x∆ y ∆ z¿ 



Now, how do we interpret this, as we have been doing earlier you can interpret in two ways,

first the easier one vx is the velocity, we multiply by area, we get the volumetric flow rate.

Multiplied by density we get the mass flow rate and then we multiplied by the total energy

per unit mass then we get the rate of flow of total energy. So, velocity then multiply by area

gives volumetric flow rate, multiply by density gives mass flow rate, then if you multiply

with the total energy per unit mass, we get rate flow of total energy.

What is the other way of interpreting vx is the volumetric flux, and then if you multiplied by

ρ you get  you get  the  mass  flux,  multiplied  by area we once  again  get  mass  flow rate,

multiplied by the total energy per unit mass we get the rate of flow of total energy the ways

of interpreting. Now, ρ , v x , e all can vary specially, and the left face is that x the right face is

at x+∆ x.

So, you have indicated that the whole term is evaluated at  x, the whole terms is evaluated

x+∆ x, so these terms put together represent rate of flow of total energy entering at x and that

is what is written here. 

The rate of flow of total energy entering at x+∆ x = ( ρv xe )∨¿x+∆ x∆ y ∆ z ¿

So, what we are discuses now is, how to express the rate of flow of total energy entering and

then leaving through the faces of the x direction.
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So, now let us extend this for all the other three directions, what we have seen in the previous

slide are these terms. 

( ρv xe )∨¿x+∆ x∆ y ∆ z−( ρv xe )∨¿x ∆ y ∆ z ¿¿

Now,  what  does  this  represent  this  represents  rate  of  flow  of  energy  leaving,  and  this

represents rate of flow of energy entering when I say energy at I mean total energy.

So, these two terms put together represents net rate of flow of total energy leaving the control

volume through the control surfaces in the  x direction. So, let us write similarly for other

directions there is energy entering at the bottom face and then energy leaving at the top face

and those two terms are shown here.

(ρv ye )∨¿y+∆ y∆ x∆ z−(ρv ye )∨¿ y∆ x∆ z¿¿

Once again we should take as rate of flow of energy leaving minus rate of flow of energy

entering, because this integral terms tells about net rate at which energy leaves the control

surface. Similarly, in the z direction 

( ρv z e)∨¿z+∆ z∆ x∆ y−( ρv z e)∨¿z∆ x∆ y ¿¿

So, as we are discussed earlier let us divide by ∆ x∆ y∆ z and keep it ready, so that later on

we can take limit ∆ x∆ y ∆ z→0, so that becomes a point. 

(ρv xe )∨¿x+∆ x−
(ρ vx e)∨¿x

∆ x
+(ρ v ye )∨¿y+∆ y−

(ρv ye )∨¿y

∆ y
+ (ρv ze )∨¿z+∆z−

(ρv z e )∨¿z

∆ z
¿¿¿¿¿¿

So, now we should note that they once again represent rate of flow of total energy, the net

rate of flow of total energy leaving. But, now because we are divided by ∆ x∆ y∆ z, it is per

unit volume and now it accounts for all the three directions.

So, here it is in terms of only rate of flow of energy and then net rate of flow of energy

leaving that is for x direction and then for y direction, then for z direction. When we divide

we get here as per unit volume basis, also accounting for all the three directions.
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Now, like to compare this control volume with the control volume which we have discussed

earlier while driving the differential mass balance and differential momentum balance and

those control volumes are shown in the above slide image. So, this slide shows the three

control volumes; the first one, the left side one which we use while deriving the differential

mass balance.  The second one, the middle one shows the control volume which are used

while deriving the momentum balance, the third one, the right side one which we have seen

just now. So, let us understand them, let us take one term, (ρv x )∨¿x+∆x∆ y∆ z ¿ it represents

the rate of flow of mass entering in the x direction.

And we interpreted that as the velocity into area the volumetric flow rate multiply by mass

gives a mass flow rate, then when we discuss the momentum balance what did we do we took

the same term, but now included  vx,  ( ρv x vx )∨¿x+∆ x∆ y∆ z¿. So, that now it represents the

rate of flow of x momentum entering the x direction. Why is it? Without vx it represented the

rate flow of mass we multiplied by vx which is the momentum per unit mass and then we got

rate of flow of momentum entering in the x direction.

Now what is that we have done once again taking the same term and then included a total

energy per unit mass, (ρv xe )∨¿x+∆ x∆ y ∆ z ¿ and now it represents rate of flow of total energy

entering in the x direction. So, it should be easy if you compare all the control volumes all the

terms of similar physical significance they represent the particular property. They represent



the corresponding property brought in and brought out in all the three directions because of

convection.

So, if you understand that then from one control volume we should be able to draw the other

two control volumes. And in fact, that is how these figures have been prepared the first figure

was prepared then copied pasted added the,  vx, then replace the vx with e and got the third

figure.

So, that also it may look like a copying and pasting and replacing, but that has a physical

significance behind it meaning that. All the three control volumes represent with these terms

represent  the  flow  of  that  particular  property  entering  and  leaving  and  all  these  terms

represent the convection term.
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Now, let us go back to your integral form of energy balance equation let us see what is it we

have done and where should we proceed further. 
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Now, we have applied this integral energy balance equation for the small control volume, we

have expressed the left hand side for the small control volume, both the transient term and the

convection term.



Now, we will focus our attention on the right hand side and in the right hand side we will

focus our term on the net rate of heat input or heat addition. So, what is that we are going to

discuss, now how do we express that  Q̇net ,∈¿¿ which represents net rate of heat put for the

small control volume. Now, we know that there are three modes of heat transfer; conduction,

convection, and radiation. Let us discuss what do we include here and what do we exclude

here; in fact, first we discuss the exclusion, so that we can include whatever is required.

 First radiation: radiation is significant only at high temperatures, so we neglect in fact,

not even high temperature it is at very very high temperature ok. Let us say 1000

Kelvin,  1000  degrees  centigrade,  order  of  such  a  high  temperature  radiation  is

important, we will restrict to not so high temperature, so let us neglect radiation. 

 Now, convection which represents heat transfer occurring at a fluid solid surface is

also not included. 

The reason is that let us imagine this our fluid domain and our control volume is inside. So,

when you are considering a control volume inside that is not at the boundary between a let us

say a solid and a fluid, our region is inside. So, because we are considering a control volume

inside the fluid domain we are not including the heat transfer by convection which happens at

fluid solid surface. It does not mean you are ignoring that; remember we had a differential

equations we discussed about boundary conditions.

So, when we solve the energy balance equation, these convection terms appear as boundary

conditions. We may not discuss, we may not come across an example in this course such a

boundary condition. But, in your heat transfer course you will come across a case where the

differential  energy  balance  equation  is  solved  using  the  convective  heat  transfer  as  a

boundary condition.

So,  radiation  is  not  included,  because  we  are  not  considering  very  high  temperature.

Convection  which  represents  heat  transfer  at  fluid  solid  surface  is  not  included  in  the

differential energy balance equation, in the conservation equation it is not included. Because,

that occurs only at solid fluid interface our control volumes somewhere inside. So, what is

left out is heat transfer by conduction and let us include the heat transfer conduction through

all the six faces of the control volume.
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So, now our objective is to represent this rate of heat input through the control surfaces by

conduction only. And that is what is shown in this control volume through these different

terms here. Here qx represents the heat flux in the x direction, qx represents the heat flux in

the x direction due to conduction. And how do you represent heat flux we represent that as

rate of flow of heat per unit area. And when you multiply by the area we get the rate of flow

of heat, and this heat flux can vary with spatial location. 

So we express that as  qx∨¿x¿ and similarly,  qx∨¿x+∆x¿.  And, this represents rate of heat

input by conduction and rate of heat output by conduction respectively.

So, our focus is on the net rate of heat input or heat addition, 

The rate of heat input by conduction at the x = qx∨¿x∆ y∆ z¿

Once again one specify that qx represents heat flux in the x direction due to conduction and

flux is always any quantity per time per area.

So, we have rate of flow of heat which has per time unit per unit area multiply by the area

which is ∆ y∆ z we get the rate of flow of heat and because it is inflow we are writing it as

rate of heat input by conduction. And, at the right face we have



The rate of heat output by conduction at the x+∆ x = qx∨¿x+∆x∆ y ∆ z ¿

So, now 

qx∨¿x∆ y∆ z−qx∨¿x+∆x∆ y∆ z ¿¿

The first term represents heat input and second term represents heat output what we want is

net rate of heat input that is why we subtract output from input. So, we have input minus

output representing net input, this is in contrast to the convection term which was outflow

minus inflow.

So, this has to be kept in mind when we did the convection term it was net outflow. So, we

always throughout all  the conservation equations  we have been considering it  as outflow

minus inflows, so that it represents net outflow. But, now on the right hand side we have net

rate of heat input, so we should take the term as input minus output or heat input minus heat

output. So, that does that term represents net rate of heat input ok, this convention has to be

kept in mind, so that we take care of the sign correctly.
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So, let us do it for the other directions, the net rate of heat input by conduction in the x, y, z

directions you have to just repeat it for other directions with the corresponding area. So, 

qx∨¿x∆ y∆ z−qx∨¿x+∆x∆ y∆ z ¿¿



q y∨¿y∆ x∆ z−q y∨¿ y+∆ y∆ x ∆ z¿¿

qz∨¿z∆ y ∆ x−qz∨¿z+∆ z∆ y ∆ x ¿¿

So, as for the other terms on the left hand side here also we will divide by  ∆ x∆ y∆ z and

keep it ready with us. 

qx∨¿x−
qx∨¿x+∆ x

∆ x
+qy∨¿y−

q y∨¿ y+∆ y

∆ y
+qz∨¿z−

q z∨¿z+∆ z

∆ z
¿¿¿¿¿ ¿

So, here the significance is net rate of heat input by conduction and includes all the three

directions. When you divide by, ∆ x∆ y∆ z; now these terms represent net rate of heat input

per unit volume taking into account x, direction y, direction and x direction.  So, here the

significance is net rate of heat put per unit volume.


