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Now, what we will do is discuss a few applications of the Integral Energy Balance equation

what we have derived. First example is finding out a heating load of a heater, second is the

calculation of power required for compression. These two examples are exactly same as you

would have done in a process calculation course, idea is to show that what I discussed is more

general form compared to what I have used or in fact, what you are solved as a integral

energy balance equation just to make that connection so, that you know that conceptually

they are same. Third example of course, a transient energy balance filling of a tank will be

considered. So, first two examples are exactly what you do in a process calculation course. 

Let  us  read  the  example,  assuming  ideal  gas  behavior,  calculate  the  heat  that  must  be

transferred, when a stream of a nitrogen a flowing at a rate of 200 mol per minute is heated

from  20  degree  centigrade  to  100  degree  centigrade.  This  example  is  from  the  book

Elementary Principles of Chemical Processes by Felder and Rousseau an excellent book for

process calculation. We are given the specific heat capacity 



c p(
kJ

mol 0C )=0.029+0.22 x10−5T+0.57 x 10−8T 2

Solution:

So,  of  course,  it  is  steady state.  So,  let  us write  the steady state  integral  energy balance

equation 
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Assumptions are, there is no shaft work it is just getting heated, there is only one inlet, one

outlet and as we have discussed the temperature changes about 80 degree centigrade and we

can  easily  neglect  changes  in  kinetic  and  potential  energy.  So,  the  integral  balance  gets

simplified to

Q̇
net ,∈¿= ∑

i=1

No .of outlets

ṁi ĥ i− ∑
i=1

No .of inlets

ṁi ĥ i¿

We have only one outlet and only one inlet. So, 

Q̇net ,∈¿=ṁout ĥout−ṁ¿ ĥ¿¿

Now, in terms of the question the flow rate is given in terms of mole per minute and of

course,  c p is also in terms of kilo joule per mole degree centigrade. So, let us rewrite this

equation in terms of molar units. 

Q̇
net ,∈¿=ṁout ĥout−ṁ¿ ĥ¿=ṁ (ĥout−ĥ¿ )=ṅ (hout−h¿ )¿

So, ṅ now represents the molar flow rate and hout−h¿ now represents change in enthalpy in

terms of let us say Joule per mole.



(Refer Slide Time: 04:03)

So, in molar units 

Q̇net ,∈¿=ṅ (hout−h¿)¿

Now we will have to evaluate the change in enthalpy, we will assume as a question says ideal

gas behavior in which case the enthalpy change depends on temperature change only. So, 

dh=c pdT

Now, let us integrate

hout−h¿=∫
T ¿

Tout

cp dT=∫
20

100

(0.029+0.22 x 10−5T+0.57 x 10−8T 2)dT

Now simple integration will give us 

hout−h¿=2.332
kJ
mol

So, let us substitute in this equation 

Q̇
net ,∈¿=ṅ (hout−h¿)=200 x 2.332=466

kJ
min

=7.77 kW ¿



That is the heat to be supplied ok, at typical process calculation example to emphasize that

that equation is nothing, but a integral energy balance equation. We have we had derived a

very very general form, but when we simplify we get the equation which I used.

Example: (Refer Slide Time: 05:39)

Let us look at another example this example is from Fox and McDonald and let us read the

example, air at 101 kilo Pascal and 288 Kelvin enters a compressor at 75 meters per second

and  leaves  at  an  absolute  pressure  and  temperature  of  200  kilo  Pascal  and  345  Kelvin

respectively and speed of 125 meters per second. Look at the velocities now, as I told you for

compressors and the velocities are much higher. So, inlet velocity is 75, exit is 125 and of

course, there is a pressure change and temperature change as well.

The flow rate is 1 kg per second and because of compression there is lot of heat release will

have  to  remove  that.  So,  the  cooling  waters  circulating  around  the  compressor  casing

removes 28 kilo Joule per kg of air. Determine the power required by the compressor.

Solution:

So, this also a typical example which comes in a process calculation course once again of

course, steady state operation.  Let us write down the steady state integral energy balance

equation 
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v2

2
+gz)

i
− ∑

i=1

No. of inlets
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Now, let us simplify, the assumptions are, one inlet and one outlet like in the last case and we

neglect changes in potential energy not in kinetic energy, we cannot in neglect, the velocities

are high, differences also high, we have seen that for 100 meters per second order of inlet

velocity even at 10 meters per second change in velocity can cause significant change in

kinetic energy if not very very high, it can cause.

Q̇net ,∈¿+Ẇ
shaft ,net ,∈¿=ṁout(ĥout+ vout

2

2 )−ṁ¿(ĥ ¿+
v¿

2

2 )¿
¿

Because it is only one inlet one outlet ṁ is same. So, let us take out that and write as 

Q̇net ,∈¿+Ẇ
shaft ,net ,∈¿=ṁ[ ( ĥout− ĥ

¿ )+( vout
2

2
−
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¿
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Now, we will have to evaluate the different terms and we will write that equation for the rate

of shaft work that is what is to be found out. 

Ẇ
shaft ,net ,∈¿=ṁ[ (ĥout−ĥ¿)+( vout

2

2
−
v ¿
2

2 )]−Q̇net ,∈¿ ¿¿

Now, we will assume air to behave as ideal gas and in this case we are let us assume the

specific heat capacity is a constant value and we have used 

ĉ p=1000
J

kg . K



ṁ=1 kg air
s

T out=345K ;T ¿=288K

 So, the difference in enthalpy is

ĥout−ĥ¿=ĉ p (T out−T ¿ )=57
kJ
kg

So, it is specific enthalpy change. We have given the outlet velocity as 125 meters per second

inlet velocity as 75 meters per second. So, we can also find out what is the kinetic energy

change per unit mass, 

vout=125
m
s
; v¿=75

m
s

v out
2

2
−
v¿

2

2
=5

kJ
kgair

As we have discussed it is not negligible it is not very significant also for this conditions it is

roughly about one tenth of the enthalpy change.

The Q̇net ,∈¿¿ is the rate at which heat is added, remember it is heat removal here. So, 

Q̇
net ,∈¿=−28 kJ

kg air
x1 kg air

s
=−28000 J

s
=−28kW ¿

We had to pay attention to the minus sign the way in which we had defined is Q̇net ,∈¿¿ is net

rate  at  which  energy is  added by heat  transfer  into  the  control  volume.  So,  in  this  case

because heat is being removed it is minus 28 kilo Watts.

So, let us substitute all of them in the equation. So, 

Ẇ
shaft ,net ,∈¿=ṁ[ (ĥout−ĥ¿)+( vout

2

2
−
v ¿
2

2 )]−Q̇net ,∈¿ ¿¿

Ẇ shaft ,net ,∈¿=1 x57+1 x5+28=90kW ¿

So, the rate of shaft  work is  90 kilo  Watts  and of course,  that  is  the rate of work to be

supplied to the fluid and that is the power required by the compressor. So, once again this



example the kinetic energy changes or not very significant they are not very high, but they

are also not negligible.

Example: (Refer Slide Time: 12:41)

The last example based on the transient energy balance, let us read the example, a tank of 0.1

meter cubed volume is connected to a high pressure airline; both line and tank are initially at

a uniform temperature of 20 degree centigrade. The initial tank gauge pressure is 100 kilo

Pascal. The absolute line pressure is 20 mega Pascal, the line is large enough so that it is

temperature  and  pressure  may  be  assumed  constant.  This  line  is  very  large  and  we  are

connecting a say a small tank and so, we neglect the changes in the temperature and pressure

in the line.

The tank temperature is monitored by a fast response thermocouple, thermocouple is used for

measuring temperature and should respond fast and the instant after the valve is open. So,

you want to fill this tank you are opening the valve and so the temperature starts to rise inside

the tank and that temperature rise is given as 0.1 degree centigrade per second. So, at the

instant after the valve is opened the tank temperature rises at the rate of 0.1 degree centigrade

per second that is why we need a fast response thermocouple. Determine the instantaneous

flow rate of air into the tank is heat transfer is neglected we neglect heat transfer.

So,  nice  question  it  is  difficult  to  measure  the  mass  flow rate,  but  easy  to  measure  the

temperature  rise  just  put  a  thermocouple  inside  and then  you can note  down the  rate  of

change  of  temperature,  from  that  using  a  conservation  equation  namely  integral  energy



balance equation we are able to find out what is the rate at which mass enters the control

volume namely the tank here. It says instantaneous and it says initial etcetera because the

value keeps changing the temperature keeps changing pressure keeps changing in the tank.

Of course, the for the high pressure line we have assumed to be constant because very large,

but these values keep changing the temperature, pressure, the mass flow rate keeps changing

the tank as it is getting filled up. That is why at that moment the valve is open let us say at

sometime T equal to 0 we can calculate what is the instantaneous mass flow rate and these

values corresponds to that initial condition and this example a very nice example from Fox

and McDonald.

Solution: (Refer Slide Time: 15:53)

So let us start with the integral energy balance equation, specifically this time with the time

rate of change term that is main attention or main focus of this example.

d
dt
∫
CV

ρ(û+ v
2

2
+gz)dV+∫

CS

ρ(ĥ+ v
2

2
+gz )v .n dA=Q̇net ,∈¿+Ẇ shaft ,net ,∈¿ ¿¿

So, now, all the terms are there in the integral energy balance equation. Now, let us write

down the assumptions we will neglect changes in kinetic energy, potential energy, there is no

heat transfer as per the question there is no shaft also.



So, in the control volume, there is no shaft work, there is no heat transfer as per the question

and with neglect a changes in kinetic and potential energy. So, let us see how the equation

gets simplified, 

d
dt
∫
CV

ρ ( û )dV +∫
CS

ρ ( ĥ ) v . ndA=0

When we say neglecting changes in kinetic energy and potential energy, two implications are

there one is change with respect to time. So, that is why we are neglecting in the transient

term also and then changes between inflow and outflow of course, here there is no outflow,

but changes between inflow and out flow there again the kinetic energy changes, potential

energy changes are negligible.

So, both in the transient term and the convection term we do not consider the kinetic energy

and potential energy terms of course, right hand side there is no heat transfer term, no shaft

work etcetera. So, as I told you the idea of this question is to mainly focus on the transient

term. So, left hand side we have the transient term the internal energy is what plays a role,

remember in the convection term as we have discussed and emphasized also what plays a role

is the enthalpy and the convection term has got simplified.

So in this simplified form you can say that the first term tells about rate of change of internal

energy in the control volume and second term tells you net rate at which enthalpy leaves the

control volume through the control surface in this simplified form and want to emphasize

once again internal energy in transient term enthalpy in the convection term. Let us make

some assumptions to simplify further we will assume uniform properties in the tank when I

say in the tank inside the tank and also at the inlet you will also assume ideal gas behavior.

Now, if you take the first term the transient term 

d
dt ∫CV

ρ ( û )dV=
d
dt
ρ ûV=

d
dt
ûm

Because the properties are uniform you can take ρ û outside the integral sign So, the first term

in left hand side has got simplified to the above expression.



(Refer Slide Time: 19:53)

Now, let us take the convection term let us let us see how do we simplify that, the convection

term we have 

∫
CS

ρ ( ĥ ) v .n dA=−ρ ĥvA=−ṁ (û+ pρ )=−ṁ (û+
RT
M air

); ρ=
pM air

RT

Once again as we have assumed we will assume the properties to be uniform across the area.

So, I can take out all the terms outside the integral sign and because it is inflow we know that

v .n=−v where v is the magnitude. 

Now,  ρvA  is the mass flow rate so, which is denoted as  ṁ we have a negative sign and

enthalpy because we have internal energy on the left hand side. We will express enthalpy in

terms of internal energy as I told you is an example where it discussing about the medium is

gas. So, we will have to distinguish between enthalpy internal energy changes.

So, let us substitute the two simplified terms in the integral energy balance equation before

there is also simplified. 

d
dt
∫
CV

ρ ( û )dV +∫
CS

ρ ( ĥ ) v . ndA=0

So, let us substitute in this equation the transient term is 



d
dt
ûm−ṁ(û+

RT
M air

)=0

Remember R is 8314 
J

kgmol K
, because density is in 

kg

m3
.

(Refer Slide Time: 22:55)

That is the equation you have seen in the last slide 

d
dt
ûm=ṁ(û+

RT
M air

)

Let us apply product rule to the left hand side 

û
d
dt
m+m

d
dt
û=ṁ (û+

RT
M air

)

Now, we will have to find an expression for 
d
dt
m. So, what we will do is, to use the integral

total mass balance equation with it time rate of change term that is why the title of the slide

says integral mass balance with time rate of change term.

Let us write the integral total mass balance equation. 

d
dt ∫CV

ρdV +∫
CS

ρv . ndA=0



So, that is way it is a good example where we use both the integral mass balance equation

and the energy balance equation, that is the integral mass balance equation. We will assume

uniform properties in the tank and at the tank inlet, which means that 

d
dt
ρV−ρ vA=0

d
dt
m=ṁ

So, how do we interpret, very simple rate of change of mass in the tank is equal to rate at

which mass enters the tank very simple interpretation of course, very well known to us, but

you have done more formally here. So, let us substitute this relationship in the equation. So, 

û ṁ+m
d
dt
û=ṁ (û+

RT
M air

)

So, now left hand side we have û ṁ, right hand side we have once again û ṁ they cancel each

other. So, above equation gets simplified to 

m d û
dt

=ṁ RT
M air

Remember even intuitively the final equation cannot have an internal energy term standing

alone or enthalpy terms standing alone why is that they are all absolute values of internal

energy enthalpy do not have a meaning, always only change of internal energy as a meaning

change of enthalpy has a meaning.

So, look at  this  equation we had  û certainly  they cannot  they cannot appear  in the final

equation, they will appear only in terms of rate of change of internal energy or some change

of  enthalpy  etcetera.  Suppose,  if  your  equation  final  equation  somewhere  or  somewhere

enthalpy has such if  at  all  should be relative to some reference.  Also once again like to

mention is rate of change of internal energy not enthalpy because it is in the accumulation

term. 



(Refer Slide Time: 26:52)

So, now we are almost few more steps to find out the flow rate of air into the tank that is

equation which we have written in the last slide. 

m d û
dt

=ṁ RT
M air

Now how do we express d û, we assume air to behave as an ideal gas 

d û=ĉvdT

This is what I have being trying to emphasize the change in internal energy is related to

change in temperature through specific heat capacity at constant volume. If we for example,

wrongly  assume  that  in  the  transient  term also  you  have  enthalpy  then  we  would  have

wrongly used ĉ p here, suppose if it were liquid then does not matter because  ĉ p and  ĉv are

same for liquids or almost same for liquids. So, let us substitute. So, left hand side becomes 

m ĉv
dT
dt

=ṁ RT
M air

So, ṁ is the unknown. So, let us keep that on the left hand side and bring all other variables to

the right hand side, 



ṁ=

m ĉv
dT
dt

M air

RT
=

ρV ĉv
dT
dt

M air

RT

Now, let us list down all the data given in the problem, 

V=0.1m3; ρtank=
p tankM air

RT
=

(100+101 ) x103 x 29
8314 x 293

=2.39
kg

m3

ĉv=717
J

kgK
; dT
dt

=0.1
0C
s

=0.1 K
s
;T=293K ;

So, if we substitute all these values we will get 

ṁ=0.204 g
s

So, very good example we have used both the integral mass balance and the energy balance

including the transient term. Practically how do you measure the flow rate entering the tank

very difficult, now indirectly we are measuring the flow rate I would indirectly measuring the

flow rate.  I  would  say  you are  measuring  rate  of  change  of  temperature  that  is  easy  to

measure using a conservation equation assumptions of course, new are I would say estimating

the rate at which estimating the rate of mass inflow into the tank and that is, this value is at

that instant as time progresses that keeps changing.

(Refer Slide Time: 31:25)



So let us summarize the this part of the lecture on integral energy balance equation started the

law of physics first law of thermodynamics. Then from the law of physics we went to the

integral energy balance equation using a Reynolds transport theorem. We discussed in detail

about the rate of work done which could be by a shaft, by pressure, viscous stresses and work

done by pressure got added to the internal energy in the convection term. So, we emphasize

that the transient term as internal energy the convection term has enthalpy.

We looked at several levels of simplifications of the internal energy balance equation and we

arrived the equation which is usually used in a process calculation. Of course how do you use

that equation, mostly if you are finding heat to be supplied, also in a process calculation

course you would have done some adiabatic calculations where Q is 0 and you would have

used a same integral energy balance equation to find out the temperature of course, we are

not done any such example you would have done certainly several examples.

So, either the heat addition is a unknown or the temperature is unknown, but same integral

energy balance equation. We looked at few applications heater, compressor, filling of a tank,

mainly our objective was to find out at least under steady state conditions to find out the heat

and power requirements.


