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Yeah, the Integral Energy Balance in its full form of course, looks scary with so many terms

in it, but we will see now how to simplify it.

𝑑
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∫ ρ 𝑢
^
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^
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So we are going to discuss about Simplification of the Integral Energy Balance equation, just

like we simplified the integral total mass balance equation. We did not simplify much the

integral linear momentum balance, we only looked at straightaway in the applications, but we

simplified the integral mass balance equation. So, this discussion will be roughly along those

lines.

So, let us write down the complete integral energy balance equation;

𝑑
𝑑𝑡

𝐶𝑉

 

∫ ρ 𝑢
^

+ 𝑣2

2 + 𝑔𝑧( )𝑑𝑉 +
𝐶𝑆

 

∫ ρ ℎ
^

+ 𝑣2

2 + 𝑔𝑧( ) 𝑣. 𝑛 𝑑𝐴 = �̇�
𝑛𝑒𝑡,𝑖𝑛

+ �̇�
𝑠ℎ𝑎𝑓𝑡,𝑛𝑒𝑡,𝑖𝑛

Now, if we consider a control surface where there multiple inlets and outlets, this diagram we

have come across earlier also now how do we simplify. Now, we will make some

assumptions the total energy is uniform in the control volume, but which means within the

control volume and total energy is uniform across the inlets and outlets.

What does it mean? Within the control volume, the total energy is uniform and across inlets

then outlets the total energy is uniform which means there is no variation across the cross

section. Now, how do we usually split the control surface? Usually we split the control

surface let us say inlets, outlets and then the wall and wherever we have a wall the convection

term does not contribute because velocity is 0.



Now, how do we simplify the term where there are inlets and outlets let us see that.

𝑜𝑢𝑡𝑙𝑒𝑡

 

∫ ρ ℎ
^

+ 𝑣2

2 + 𝑔𝑧( ) 𝑣. 𝑛 𝑑𝐴 = ℎ
^

+ 𝑣2

2 + 𝑔𝑧( )
𝑜𝑢𝑡𝑙𝑒𝑡

 

∫ ρ 𝑣. 𝑛 𝑑𝐴 = �̇� ℎ
^

+ 𝑣2

2 + 𝑔𝑧( )
We assumed that the total energy is uniform across the inlet and outlet which means that

term does not vary across a cross sectional area. So, I can take out this termℎ
^

+ 𝑣2

2 + 𝑔𝑧( )
outside the integral sign that is what I have done here and what is left out is the mass flow

rate.

So, I can write this as the mass flow rate into sum of all the energy terms and if we do this�̇�

for inlet, you will have a negative sign why is it? Because is positive for outlet and is𝑣. 𝑛 𝑣. 𝑛

negative for inlet. So, now let us simplify use this and simplify the integral energy balance

equation.
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+ �̇�
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Now, how do we simplify this convection term? The convection term is for inlets and outlets

and so we express that as sum over outlet and summed over inlet. And we have seen that we

can simplify that term as and the sum of the energies that is what has been used here for�̇�

every outlet i and same term here of course, the negative sign here, right hand side remains

the same.

So, what is the simplification? The total energy is uniform in the control volume and across

inlets and outlets. So, the transient term gets simplified and the convection term is over

outlets and inlets which is expressed as the mass flow rate into the sum of the energies; we

also taken into this sign ourselves.
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So, now let us proceed further; let us see how do we simplify this further. So, the same

equation is written here.
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So, now this looks certainly simpler we do not have the integral signs ok. The integral sign

was take into account either variation within the volume or over the inlet and outlet because

we assume it is uniform integral signs are gone and we also expressed in terms of mass flow

rate.

Now, if we are operating under steady state condition; the left hand side, the transient term

goes to 0

𝑑
𝑑𝑡 �̇� 𝑢

^
+ 𝑣2

2 + 𝑔𝑧( ) = 0

And then in a steady state operation usually the unknowns are rate of heat to be supplied or

the rate of shaft work. So, let us simplify that equation
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So, rate of heat addition, and rate of shaft work on the left hand side; why is that? Usually the

unknowns are on the left hand side.

Now, we will make few more assumptions and simplify further; if changes in kinetic and

potential energies are negligible why is it so? What is that we are going to assume now?

Changes in kinetic and potential energies are negligible compared to change in enthalpy;

what does it mean? If you have a control volume let us say only one inlet one outlet, what is

the change in enthalpy between inlet and outlet? How does that compare with change in

kinetic energy change in potential energy.

To understand that comparison and justify this assumption that usually kinetic potential

energy changes are negligible; to justify that we have a small example here. Let us say we

have air flowing and then its temperature increases by just 1 degree centigrade, just 1 degree

centigrade air is flowing.

And so the change in enthalpy will be

∆ℎ
^

= 𝑐
𝑝

𝑇
2

− 𝑇
1( ) = 1000 𝐽

𝑘𝑔

Here, is 1000 Joule per kg Kelvin; and so the enthalpy change in terms of per unit𝑐
𝑝

∆𝑇 = 1

mass is 1000 Joule per kg. Now, let us see what is the velocity change that should happen, so

that the kinetic energy change is 1000 Joule per kg. So, equate the kinetic energy change to

1000.

𝑣
2
2

2 −
𝑣

1
2

2 = 1000

Now of course, the change in velocity require for the kinetic energy changed to be 1000

depends on . So, let us take different cases of let us say inlet velocity and what is shown𝑣
1

𝑣
1

here is as a table; the inlet velocity and corresponding change in velocity that should happen

so that the change in kinetic energy is 1000 Joule per kg.

𝑣
1 1 10 100

∆𝑣
44 36 10



So, now if the let say inlet velocity is 1 m/s, the change in velocity should be 44 m/s; then the

change in kinetic energy is 1000 Joule per kg. If then it is 10 change should be 36, inlet is

100, then change should be 10.

Now, for usual equipments let us say heat exchanger, distillation column or reactors etcetera,

let us say the inlet velocity is order of 1 m/s, then the change should be 44 meter per second

which hardly happens that is why change in kinetic energies are negligible. But let say

suppose we have a steam turbine we have a compressor, then the velocity or somewhere in

the range let us say order of 100 meter per second, then the velocity can change by let say

order of 10 m/s. So, in those cases you will have to consider the change in kinetic energy

term for compressors, steam turbines etcetera.

Coming to the potential energy; what is the elevation required for the potential energy change

to be 1000 Joule per kg. So, let us equate potential energy to 1000 and so

𝑔 𝑧
2

− 𝑧
1( ) = 1000;            ∆𝑧 = 100 𝑚

Once again that is a too large a height for usual pros equipments. Remember that is for just 1

degree centigrade change usually temperature change are larger than that. So, once again the

potential energy changes also negligible that is why we are going to simplify for a more

practical case I would say where changes in kinetic and potential energies are negligible.

So, let us take the case where there is no shaft work; why? For usual equipments where let us

say heat exchange, the distillation column there are no shaft work. Shaft work plays a role

when you have a pump compressor or you have a stirrer etcetera, then there is shaft work.

So, it gets simplified to
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𝑛𝑒𝑡,𝑖𝑛
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𝑖
ℎ
^

𝑖
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𝑖
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Of course, now becomes very simple; this is the energy balance mostly used in process

calculation course. Usually you would have considered steady state process and let us say if it

is without shaft work and you would have used the energy balance to find out the heat to be

supplied. And this is a form of energy balance which would have used in this simplest case

we can probably call this as enthalpy balance; only under this condition and we should note

that it is a most one of the most simplest forms of the total energy balance.


