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So, the surface force is typically represented using a second order tensor, which is called 

as 𝜎𝑖𝑗. 𝜎𝑖𝑗 is actually a force acting in i direction on an area directed in j direction. So, you 

can always define a vector normal to any area that you consider and let us say j is the 

direction and i is the direction of the force ok. So, that is how you will represent your 

surface forces for example, if you talk about σ x y ok; that means, you have a force which 

is acting in the x direction, but it is on an area that is perpendicular to y direction. So, that 

is the idea of defining it. So, if you want to mark here, let us say in our diagram we want 

to represent σ. 
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So, remember. So, how many components of σ would be there? There will be nine 

components. There will be nine components of the stress and is often conveniently 

represented as a matrix and that can be simplified or that basically constitutes two parts 

this is the total stress, that stress can be either due to pressure or due to shear stresses ok. 

So, we said there are two kinds of surface forces pressure and stress shear stress. So, the 

pressure is typically denoted by P the shear stress is let us say we will use τ to represent 

that.  

[

𝜎𝑥𝑥 𝜎𝑦𝑥 𝜎𝑧𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑧𝑦

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

] = [

−𝑃 + 𝜏𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥

𝜏𝑥𝑦 −𝑃 + 𝜏𝑦𝑦 𝜏𝑧𝑥

𝜏𝑥𝑧 𝜏𝑦𝑧 −𝑃 + 𝜏𝑧𝑧

] 

So, this is if you want to write your surface stresses as pressure and shear stresses viscous 

stresses separated. So, I can also show it schematically. So, for example, let us look at 𝜎𝑥𝑥. 

Its a force that is acting in x direction on a plane in x direction. So, if you looked at 

𝜎𝑥𝑥 would actually be this. Now you I can also define of this. So, the area that I am looking 

at is this the one which is perpendicular to x direction ok. So, I can define two more forces 

I can define a force that is acting in y direction on this area x. So, a force that is acting in 

x direction, so, acting in y direction on this area x that I can write it as σ y x, I can talk 

about another stress that is acting in z direction. 



So, that will be σ z x. Similarly if I consider another point let us say that this on this plane. 

So, that plane is a plane that is perpendicular to y. So, if I define a σ yy, that will be a force 

that is acting in y direction on the area y, I can define a force that is acting in x direction 

on this plane y. So, that we will write it as σ x y or I can write down a force that is acting 

in the z direction. So, that will be σ z y ok. So, these are the various components of forces 

or various components of this matrix the stress that we are talking about. 
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Now, what we really need is that, we need to write down how these stresses come as part 

of the force that we are talking about, because that is the expression that we are really 

looking for. In other words we need to write down the stresses as forces. So, we have 

already done that in the context of a equilibrium system a fluid which was under you know 

equilibrium which was not flowing a static fluid and there we found that the force is 

essentially written as gradient of pressure. So, we found that its not pressure that is really 

important, its a differences in pressure that is what is going to be important its the gradient 

of pressure that generates a force. Similarly, we need to we will give something similar 

here we need to find out how is stress going to be reflected as force.  

So, let us make another diagram let us consider a fluid element or your cell notation x y z, 

let us look at one of the faces say the red face ok. So, there I have σ x x. So, σ xx is acting 

on that side ok. So, if σ xx is acting on this side, on the other side we can say that is the 

force this stress is going to be σ x x plus ∂ by ∂ x of σ xx or if you want to talk about the 



force is going to be multiplied by dy d z and on this side as well its going to be multiplied 

by dy dz. In other words the forces that is going to come in x direction from this particular 

component, so, difference ok. 

The difference between the force acting on the left side and the force acting on the right 

side is the force that is acting in x direction, : 

𝑑𝐹𝑥 =
𝜕

𝜕𝑥
(𝜎𝑥𝑥)𝑑𝑥 𝑑𝑦 𝑑𝑧 +

𝜕

𝜕𝑦
(𝜎𝑦𝑥)𝑑𝑥 𝑑𝑦 𝑑𝑧 +

𝜕

𝜕𝑧
(𝜎𝑧𝑥)𝑑𝑥 𝑑𝑦 𝑑𝑧 

𝐹𝑥 = [
𝜕

𝜕𝑥
(−𝑃 + 𝜏𝑥𝑥) +

𝜕

𝜕𝑦
(𝜏𝑦𝑥) +

𝜕

𝜕𝑧
(𝜏𝑧𝑥)] 𝑑𝑥 𝑑𝑦 𝑑𝑧 

So, that is the total force that is going to be acting on this fluid element ok. So, the forces 

defined positive in the positive x direction and therefore, the net force that is acting in the 

plus x direction is given by that extra contribution. So, that is the force in x direction. 

Similarly, you can derive a force in y direction and you can derive a force in z direction as 

well.  
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In other words this is going to be the force density this is going to be the force density that 

we really need in x direction in the expression that we had derived here. So, that was the 

expression that we had derived here. So, there is a ρ g that we have we have it from the 



body force and then we have a shear stress term that is going to come here. So, we can 

now use all this fact and simplify and write down our momentum equation as:  

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] = −

𝜕𝑃

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑔𝑥 

So, there is a full expression for the momentum conservation in x direction. Similarly we 

can write down the y part:  

𝜌 [
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
] = −

𝜕𝑃

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑔𝑦 

𝜌 [
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
] = −

𝜕𝑃

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+ 𝜌𝑔𝑧 

So, this is what the equation of linear momentum written for the fluid element in the 

Eulerian frame of reference. It just looks complicated, but actually it’s not that is ok. So, 

the left hand side if you look at that is nothing, but the substantial derivative the substantial 

derivative of velocity and the substantial derivative of velocity is nothing, but acceleration. 

So, the left hand side really represents the acceleration and if the left hand side is 

acceleration the right hand side should be force remember we have written it for unit mass 

ok. So, this side is going to be nothing, but total forces. 

So, the forces consist of two parts, one is that you have got gravity forces and the other is 

that you have got viscous forces and then we have got pressure forces. So, in each equation 

acceleration is equal to pressure plus viscous forces plus gravitational forces that is all it 

is; now it’s convenient. So, remember we did not write what τ is we just defined τ as a 

shear stress, we defined it as a surface force and we said that is what is acting on the fluid 

element, but we need to further simplify it in order to you know use it further ok. Because, 

if you write it in this particular form there are too many unknowns and what are the 

unknowns? For example, velocities are unknown the way its written pressure we do not 

know, shear stress we do not know that is where Newton’s law of equation comes into 

picture.  

Newton’s law of viscosity comes into the picture we can use Newton’s law of viscosity to 

write stress in terms of velocity gradients ok. So, stress if you write it in terms of velocity 



gradients the unknowns the stress being unknowns will go away and instead we are going 

to get velocities. So, we can try to do that now. 
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So,  

𝜏𝑥𝑥 = 2𝜇
𝜕𝑢

𝜕𝑥
; 𝜏𝑦𝑥 = 𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) ; 𝜏𝑧𝑥 = 𝜇 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)  

Remember, when we derived the Newton’s law of viscosity we simply connected stress 

with rate of strain here I have written down in a much more general fashion, where each 

of the components of the shear stress is related to what you call as the velocity how it is 

connected to the velocity gradient ok.  
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And this can be further simplified. 

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
=

𝜕

𝜕𝑥
(2𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)) +

𝜕

𝜕𝑧
(𝜇 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
))

= 2𝜇
𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+ 𝜇

𝜕2𝑣

𝜕𝑥 𝜕𝑦
+ 𝜇

𝜕2𝑢

𝜕𝑧2
+ 𝜇

𝜕2𝑤

𝜕𝑥 𝜕𝑧

= 𝜇 [
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
] + 𝜇 [

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥 𝜕𝑦
+

𝜕2𝑤

𝜕𝑥 𝜕𝑧
]

= 𝜇 [
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
] + 𝜇

𝜕

𝜕𝑥
[
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
] 

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
= 𝜇 [

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
] + 0 

So, this this entire expression is 0 for an incompressible fluid, that is what we had derived 

incompressible fluid so; that means, it’s not there or in other words it’s not there. So, what 

I wanted to tell you is that the right hand side of the equations that we derived essentially 

simplifies into this particular form and therefore, I can substitute that back into the 

equations that we derived. So, the one that you are seeing in this purple color we can now 

replace. And if you replace it and we can do that for other equations as well and then the 

equations simplify further. 
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And the simplified equations would be 

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] = 𝜌

𝐷𝑢

𝐷𝑡
= −

𝜕𝑃

𝜕𝑥
+ ∇2𝑢 + 𝜌𝑔𝑥 
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Now, similarly for the y and z momentum equation  

𝜌 [
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
] = 𝜌

𝐷𝑣

𝐷𝑡
= −

𝜕𝑃

𝜕𝑦
+ ∇2𝑣 + 𝜌𝑔𝑦 



𝜌 [
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
] = 𝜌

𝐷𝑤

𝐷𝑡
= −

𝜕𝑃

𝜕𝑧
+ ∇2𝑤 + 𝜌𝑔𝑧 

So, that is the equations of linear momentum expressed as you know only in terms of 

velocity. So, if you look at now you only have u v w and pressure as the unknowns ok. So, 

let us see unknowns are u v w and p. So, that is 4 in number how many equations are there? 

You have three equations here equation of x y z linear momentum and then you also have 

conservation of mass. So, you will have four equations, four unknowns and given any 

problem you will be able to solve and find out the solution ok. 

The equations look a little more detailed ok, but there are many cases where it is it can be 

so simplified and solved and we will look at some of the cases later on, which will give us 

some insight into what does the fluid flow look like in a given situation. So, these equations 

that we have derived we have assumed Newton’s law of viscosity, we have assumed 

incompressibility. So, this is really applicable for incompressible fluids and we have also 

used Newtonian assumption in other words we have used Newton’s law of viscosity and 

of course, we are using we have expressed this in Cartesian coordinate system.  


