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Lecture - 17 

Taylor couette flow 

 

So, we have seen examples of how we can simplify the Navier Stokes equations namely 

the mass and momentum balances in a Cartesian coordinate system. We have also seen 

why these equations would be different for other coordinate system. For example, in a 

cylindrical coordinate system and the spherical coordinate system and so on and we 

learned that the main difference is because the unit vectors that you have for non-Cartesian 

coordinate systems is location specific and therefore, they give rise to non-trivial you know 

terms in the equation and therefore the equations would indeed look different. 

So, we can see an example of a cylindrical coordinate system and see how do we simplify 

the equations and that flow is a very nice flow because it gives you a lot of other insights 

into the system. So, this is flow between 2 concentric cylinders ok. 
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So, you have 2 cylinders 1 inner cylinder and 1 outer cylinder, I am giving the top view. 

So, let us say that is here inner cylinder and that is here outer cylinder and let us say R i is 

the radius of the inner cylinder and R o be the radius of the outer cylinder and the fluid is 

between the inner cylinder and the outer cylinder and let us say that this inner cylinder is 



rotating. It is rotating with an angular velocity omega and so the. So, you have a fluid now 

between 2 cylinders; the inner cylinder is rotating because of which the fluid outside will 

actually start moving, but because the outer cylinder is not rotating the velocity of the fluid 

exactly on the outer surface or outer cylinder should be 0 and our idea is to find out how 

does the velocity change from the inner to the outer cylinder ok. 

So, the appropriate coordinate system that we want to consider here would be cylindrical 

coordinate system. Let us assume that the cylinders that you are looking at are really long 

ok; so, much long in the z direction. So, the z direction is going to be perpendicular to the 

plane that we are considering and the cylinders are so long that we can neglect all 

variations in the z directions. So, we will and also the velocity in the z direction. So, 

because this inner cylinder is rotating you would expect that the fluid flow is in the θ 

direction really.  

So, if I am taking the cylindrical coordinate system I have an R which is in the direction 

of the radius, then I will have a θ direction which is in the plane and then there is an z 

direction and that is perpendicular to the plane you will assume that V z is equal to 0 and 

∂ by ∂ z are also equal to 0 because the cylinder is infinitely long perpendicular to the 

surface there is nothing that is going to change in that direction. If that is the case then let 

us see how do the equations simplify ok. 
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So, the first thing that we need to write down is the mass conservation equation.  
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And as I said a you can take it from any standard textbook because the equations would 

look a little different from the one which we write in Cartesian coordinate system. So, 

again you have r θ and z direction. So, there are 3 terms one depends upon v r the second 

depends upon v θ and the third depends upon v z. 

Now, we need to simplify this equation, we know that we are assuming that the flow is 

purely azimuthal; that means, it is only in the direction of θ it is and the pipe is infinitely 

long.  

Now, also we are going to say that there is nothing that is going to change in the θ direction 

because θ direction if you look at that is the flow is just continuous there is no θ that is 

different. So, θ equal to 0 or θ equal to pi by 4 it is just same. So, you would not expect 

anything that is changing in the θ direction and therefore, derivatives of any quantity in 

the θ is also going to be 0.  
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On integration: 
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Now, in order to evaluate this constant we need to calculate what we need to have some 

physical insight. So, what should be let us say the value of v r on the surface of the inner 

cylinder. Let us imagine that is your inner cylinder and this inner cylinder is rotating you 

know in a counterclockwise fashion with some angular velocity. What do you expect the 

value of v r on the surface of the cylinder? You cannot have fluid that is going into the 

cylinder because the cylinder is a solid cylinder. So, v r on the surface of the cylinder has 

to be 0. So, 



𝐴𝑡 𝑟 = 𝑅𝑖, 𝑣𝑟 = 0 → 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0 

So, now we have said we have found that v r is 0 everywhere in the fluid domain v z is 

equal to 0 because we have assumed an infinitely long pipe and there is no flow along the 

length of the pipe and there is only fluid flow is in the θ direction and therefore, we need 

to only worry about the θ component of the fluid velocity. We can write down only the θ 

momentum equation, but before that it is worth looking at the radial component of velocity 

or r momentum equation as well. 
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Because that is going to give you some insight into the problem; so, we can look at θ 

momentum equation that is what is going to give you information about the about the flow 

profile.  

So, let us start by doing that, we start by writing down the θ momentum equation 

𝜃 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝜌
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So, that is what the θ momentum equation reduced to. We can look at what r momentum 

equation reduced to: 
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Now, if you look at this equation carefully the right hand side that is V square by r. So, 

that is not force or it is the for centrifugal force density the centrifugal force acting per unit 

mass ok. So, that is equal to the pressure gradient. So, in other words whenever the fluid 

elements are rotating it experiences a centrifugal force and that force is actually balanced 

by a pressure gradient in the r direction. So, something is rotating in the θ direction it 

experiences a centrifugal force and that force is exactly balanced by the pressure gradient. 

So, the radial pressure gradient balance the centrifugal force, radial pressure gradient 

balances the centrifugal force. 



So, that is the information that you get the r momentum equation. The θ momentum 

equation of course, gave you a differential equation which we need to solve and find out 

what is we solving it now.  
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So, that is the differential equation that we need to solve to calculate what is v θ. Now, 

these kind of differential equations ok. So, you know d square y by d x square plus 1 by x 

d y plus y by x square is equal to 0. 
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So, these equations are called Euler Cauchy equations and they admit a solution of a power 

law ok. For example, here the solutions that these equations will be something like r to the 

power of m. So, that is the kind of solution that we will have. So, we can actually try to 

find out what that would be. So,  

𝐼𝑓 , 𝑣𝜃 = 𝑟𝑚 → 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 
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(𝑚 − 1)(𝑚 + 1) = 0 

𝑚 = ±1 

That means, my solution is going to be  

𝑣𝜃 = 𝐶1𝑟 +
𝐶2

𝑟
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We have an inner cylinder that is rotating with an angular velocity omega. We have an 

outer cylinder that is static. So, and the inner cylinder has a radius R i the outer cylinder 

has a radius R o. So, we can say that  

𝐴𝑡, 𝑟 = 𝑅𝑜 ;  𝑣𝜃 = 0 

𝑟 = 𝑅𝑖  ;  𝑣𝜃 = 𝑅𝑖Ω 
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So, we can substitute and find that 



0 = 𝐶1𝑅𝑜 +
𝐶2

𝑅𝑜
→ 𝐶1 +

𝐶2

𝑅𝑜
2

= 0 

Ω𝑅𝑖 = 𝐶1𝑅𝑖 +
𝐶2

𝑅𝑖
→ Ω = 𝐶1 +

𝐶2

𝑅𝑖
2 

𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝐶1, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝐶2 =
Ω

(
1

𝑅𝑖
2 −

1
𝑅𝑜

2)
 

𝐶1 = −
𝐶2

𝑅𝑜
2

= −
Ω

𝑅𝑜
2 (

1
𝑅𝑖

2 −
1

𝑅𝑜
2)

 

(Refer Slide Time: 20:28) 

 

And therefore, you are ready to get your expression  
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So, if you want you can rearrange that expression you can do it yourself and nicer way to 

represent it would be:  

𝑣𝜃 = (Ω𝑅𝑖) (
(

𝑅𝑜

𝑅 ) − (
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𝑅𝑜
)
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Just rearranging that equation if you like. So, that is the expression for the velocity profile 

between 2 concentric cylinders. In fact, if you plot it if that is the inner cylinder and that 

was the outer cylinder and if the inner cylinder is rotating you will see that the velocity 

profile would. So, the velocity at that point would be something of that sort and then it 

should become 0 and it would decay like that nice to plot it and see. 

But that is what the velocity profile is going to be. We just box that is the expression you 

need to remember anything it is just that is the information that you get when you solve 

the cylindrical problem. It also tells you how you should deal with the equations in 

cylindrical coordinate system, how some of the non-trivial terms you know contribute and 

the pressure centrifugal force balance is the other thing that nicely came out of this 

analysis. 


