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I apologize for the delay. So I just wanted to quickly now conclude on the properties of estimators and 

more on the least square estimators. The TAs have sent you links to the video lectures on methods of 

estimation. I expect you to, as I've said earlier to sit through those videos and understand the methods of 

estimation. What I'll do in the classes do a quick review of those methods and go through a few examples 

in MATLAB. So let's get going. Yesterday we talked extensively about efficiency, Cramér–Rao's 

inequality. How to derive the most efficient estimator without resorting to any other method per say, like 

least squares and so on. And then we talked about best linear unbiased estimator because the minimum-

variance unbiased estimatorin general may not exist. That is it may be an ideal dream that you cannot 

realise. Whereas a best linear unbiased estimator can be built. Only when the observation errors are 

Gaussian and white then the blue coincides with the MVUE.

So those were the statistical properties that we reviewed. The other set of properties as I've mentioned 

always is the set of asymptotic properties. The difference between statistical and asymptotic properties is 

that when we look at statistical properties namely bias variance and mean square error, we fixed the 

sample size and then we walk across the realisations and ask how they estimator performs across the 

realizations. The asymptotic properties also look at that but they also, they tend to look at the sample 

behaviour. How? The estimatorperforms as it is presented with more and more observations. Whereas the 

statistical properties are evaluated for a fixed sample size. And in that sense asymptotic properties are of 

more interest particularly in situations where you can afford to have large samples. I must tell you that 

there are many situations where the number of samples is quite limited or observations is quite limited. 

And you must be dealing with a small sample size. Then these asymptotic properties do not come into 

picture. Because they are specifically meant for the large sample case.

In engineering arena, you can think of, or you can afford to think of having large samples but in many 

other domains such as biological, systems biology, or maybe you know, market surveys or anything to do 

with health and medicine and so on. It's very difficult to think of the large sample case, in which case we 

should not be thinking of the asymptotic property. So you should be aware as to what properties one 

should be interested in depending on the scenario. So the main asymptotic property of interest as the 

lectures must told is consistency which basically looks at how close theta hat gets to, whether theta hat 

gets converges to theta not as N goes to infinity.

Now the only thing that you have to remember of course that is asymptomatic bias but consistency takes 

care of asymptomatic bias as well. That's why I'm only focusing on consistency. So what we mean my 

consistency is, the other way of reading consistency is convergence whether the parameter estimates 

converge to the truth. 



(Refer Slide Time: 04:05)

The only thing you have to remember is technically this is not such an easy problem because theta hat is a

random variable and we assume truth to be deterministic. So we want the random variable that is a 

sequence of random variables. You should just remember this. Whether you understand the full 

technicality or not all you have to remember is, that you have a sequence of parameter estimates, assume 

a single parameter that you have as a function of the sample size. The subscript indicates the sample size. 

From one observation you build an estimate, from two observations you build another estimate, N 

observations you build another estimate and so on. So as I keep increasing the sample size, I would 

generate a sequence of parameter estimates. And the question is as N goes to infinity whether the 

sequence converges to the truth, that is the idea behind consistency. That's all.

Now, having made it look very simple. Technically I said,it's lot more involved because now you're 

dealing with a sequence of random variables. Remember theta hat is a random variable. It is not like your 

regular sequence one, half, one fourth and so on. It's not a sequence of deterministic numbers. You're 

looking at sequence of random variables, therefore special notions of convergence are required and those 

are the notions that I have described in the video lectures. You should sit through them. And depending 

now on how you define your convergence, you have different forms of consistency ranging from the 

weakest to the strongest.



So please sit through those videos and understand what are the different notions of convergence of a 

sequence of random variables. As I said, this notion of convergence is different from the regular 

convergence that we learn in maybe you know, when you are 11th and 12th standard or 1st year 

undergraduate mathematics course. The three different forms of convergence are convergence and 

probability, convergence in mean square error, and almost sure convergence. In the order of increasing 

rigor. And all three are talking about whether theta hat N gets close to theta not. Right. In fact, the 

probabilistic form of convergence says that theta hat N gets very close to theta not but does not 

necessarily go and sit at theta not. It is hovering within an epsilon radius of the truth that's how you-- and 

this Epsilon can be arbitrarily small but not zero.

Mean square error says that as N goes to infinity the distance of theta hat from theta not average distance 

goes to zero. So you're in fact talking of kind of the second moment of theta hat N with respect to theta 

not. In fact the reason it's called mean square because if you look at the statement, it says expectation of 

thetahat N minus theta not square. What is that? What is that expectation of theta hatN minus theta not to 

the whole square. What properties is it?
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What is it?Variance.Seriously. We have discussed at length yesterday and day before. What is expectation 

of theta hat N minus theta not to the whole square. The answer is on the screen.Then why do you say 

variance? It's varianceonly if you're looking at unbiased estimators. So the mean square consistency is 



asking whether the mean square error goes to zero as N goes to infinity. And the third one is the strongest 

form of consistency which has got to do with almost sure convergence. Now, this almost sure 

convergence is for all practical purposestheta hat as follows,theta hat actually converges to thetanot for all

practical purposes. But there are these rare situations where it doesn't. Okay. There are this extremely rare 

situations that it may not. That's why we're saying almost sure. That means there is a very remote 

possibility that theta hat N may not go and sit at exactly at theta not. But it will for a lot of times go in and

sitat thetanot. That is what we mean we're almost sure.

I have stated in very descriptive and loose terms, the exact meaning of almost sure convergence. I've 

explained in the lectures you should sit through and understand. The almost sure convergence has got to 

do with this notion of events that occurred but they have probability 0. It's strange, when you think of 

probability. How can you say that an event occurs on the probability is 0. Can you give an example? Can 

you give an example of an event that occurs but the probability is 0. Any examples? It is very easy. 

Continues.

Correct. So in the continues valued random variable case, you have that. In fact it's an irony. At every 

point the probability is 0 but over on interval it isn't, correct. So it is possible that the random variable 

exactly achieves that value but as but our measure of probability that the probability 0 because probability

is a measure. So it is possible that the random variable exactly goes and attains that value but from our 

measure theory viewpoint probably 0.

So it's almost sure convergence is related to that. Exactly theta hat N equal the theta not. If you ask what 

is probably that theta hat N will exactly equal theta not that is 0 for continuous value parameters. So that 

is why we say that it is almost sure convergence. But leaving aside the technicality, what this means is, if 

you are able to show that an estimatorsatisfies the, it has the almost sure consistency property. We say that

theta hat N reaches theta not with probability 1. That's a very strong statement that you are making. And if

you're able to make such a statement for an estimator,if you're able to prove that then the other two 

follow, the means square consistency and consistency in probability also convergence and probability also

holds.

Generally what one tries to prove is mean square consistency. Of course, if you can prove the third one it's

great. But if you cannot then you try to prove that mean square consistency and if you cannot prove that at

least you show the weak form of consistency. But you have to work with an estimator that is consistent. 

That's extremely important because if that is not the case, your entire effort of collecting more 

observations will go futile. It will go in vein, right, because you collect more observations with a firm 



belief that as you collect more data your parameter estimate will improve. But if the estimator is such 

that, how many ever data points you collect. As I said periodogram for example as an estimate of spectral 

density is an inconsistent estimator. How many ever data points you collect the periodogram never gets 

you the truespectral density. So do not be under the impression thatalways increasing the number of 

observations will improve estimate. It depends on how your estimating. Okay.

So generally, the two desirable properties of an estimator in the order is consistency. One is consistency. 

Right. And the other is efficiency. These are the two different forms properties that one desires.

(Refer Slide Time: 12:53)

And once you show mean square consistency for example, since mean square error is the sum of the bias 

square and variance asymptotically also the estimator becomes unbiased. So this asymptotic bias is saying

that, for finite samples a bias may exist but for large samples the bias can vanish. Right.So for example, in

the variance estimators that we wrote on the board yesterday. We wrote two different estimators, one 

which has a one over N minus 1as a factor and the other that has 1 over N. The one that has N minus 1 in 

the denominator is an unbiased estimator. As a consequence the other one that has 1 over N in the 

denominator is a biased estimator. However when N is very large it doesn't matter whether you have 

1over N minus 1 or 1over N. Therefore although for finite samples size the sigma square hat N is a biased

estimator it is asymptotically unbiased estimator. At least you should say for large samples the bias should

vanish.



So those are the desirable properties of an estimator. Any estimator that you take, you should first ask if it 

is consistent. Then you should ask if it is the most efficient. What is efficiency got to do with?Correct. 

Exactly.Very good.Minimum variance. That is,it will give the least errors among all the estimators. As 

long as the estimators these two properties. It is very good. Maximum likelihood estimator have this 

property and therefore that very popular. All right.Least squares estimators also are consistent and most 

efficient but only under some restricted conditions. Okay. That we'll talk about briefly when we when we 

talk of Least square methods and Émilemethods. Okay.

So let's move on and quickly conclude this discussion on properties. The other thing that we are interested

in estimation as you know, is making confident statements about the truth which then eventually becomes 

important in hypothesis testing. Right.Remember if you recall. Remember that when we talked about 

estimation we said the purpose of estimation is not just to obtain a single value, that's called a point 

estimate. But the grander purpose is to say something about the truth. That is, give an interval in which 

you believe the truth is. And that is what we mean by confidence intervals. And the only thing you have to

remember about confidence intervals, is that it is not possible to have 100% confidence interval that is 

finite length, finite width interval because of randomness. I cannot say with 100% confidence that the 

truth is in some finite region. If I ask you what is a true temperature outside or you know something else 

you can say what is a true measurement of something else. You can say with 100% confidence that it is 

somewhere between zero and infinity or minus-- Even for that outside temperature, the 10% confidence 

interval would be the lowest achievable thermodynamically which is 0 Kelvin. And maybe temperature of

the sun or temperature of the earth or whatever 100 degree Celsius. But that for all practical purposes is 

like your minus infinity to infinity. And that's of very little use. Rather than that you would want a finite 

interval, finite width confidence interval with a high degree of confidence. And usually these are 

conflicting.As I try to narrow down the truth my degree of confidence will go down. But what we should 

strive at is to, for the same, for a given interval, if I say that I want to confine the truth to I want to be able

to say something about the truth with as narrow interval as possible. But I want highest degree of 

confidence, then what kind of an estimator should I work with. What kind of estimators will give me for a

given. Let's say, a given the degree of confidence, minimum in confidence region interval. 

Efficiency.

Efficient, that's where efficiency comes in the picture , right.Because this confidence region has got to do 

with errors in your estimate. Larger the standard error in the estimate, larger the-- wider the interval is 

going to be, a confidence interval is going to be for a given degree of confidence. So if I fixed a degree of 

confidence like typically to 95% or 99% then the one that gives me the narrowest interval for the truth. 



See truth is fixed. When we say-- When we talk about interval it is our estimate. And we may be long and 

that is what we mean by confidence. Right. So we when we say 95% confidence, what we mean is that 

there is a, in some sense although we shouldn't say a chance but that truth is not contained in this interval 

there is a possibility and that possibility you can say is 5%.

(Refer Slide Time: 18:48)

So that interpretation is extremely important.
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Let me actually do this for you. So what I explain, this is also there in the lectures but I just want to 

reiterate what confidence interval means because many people have wrong notions of a confidence 

interval. So what I did here was, I generated a thousand observations of Gaussian white noise process 

computed at the sample mean. And we know the confidence interval for mean, when you compute, when 

you estimated the sample mean.So your confidence interval depends on it estimator that you're using. If 

you sample mean and if I assume that the underlying process is Gaussian White. So there are so many 

assumptions. One I should work with the sample mean and two that the data is coming from Gaussian 

White Noise process or at least white noise process. Then we know that the confidence region is given by 

at least 95% confidence the region for the large sample case is given by this.Right.This is what is it, 

95%confidence region for what?For?

Mean.

Mean. You have to--Many people say it's a confidence interval for the sample mean. There's nothing like 

confidence interval estimate. Where estimate is a single value. So this is the 95% confidence interval for 

mean. Meaning, I'm 95%confident that the true value is contained in this interval. Large sample 

case,White Noise process and if you sample mean. If I change any of these assumptions this result doesn't

hold good.

For example if I'm looking at a correlated process this expression is not correct. If I'm looking at the small

sample case, then this is not correct. If I'm looking at a different estimator,like a sample median, then this 



expression is not correct. So there are this three assumptions that are involved. So what I did was,in this 

each realization, I generated a thousand observations and I computed sample mean and that constructed 

confidence intervals. Right.

(Refer Slide Time: 21:13)

For each realization I have one confidence region. Will the confidence intervals with the same for every 

realisation?Why? 

[21:33 inaudible] 

Y bar is going to change. Right. It's very simple. There's no complication here. You look up on this has a 

formula. Y bar is going to change from realisation to realisation.

It will be the dame but the position --

No. But the width also can change. Because of course, I assumed here that sigma is known, when sigma is

not known then you have to estimate. And for large sample case you can still use this expression. Strictly 

speaking,if you work with an estimator sigma, then you have to go back to T distribution and change that 

1.96 but will as I said assume large sample case.

And by large we mean anywhere after 40, 50 and so on. Here in thisestimation process. So sigma hat is 

also likely to change from realization to realization. Y bar is going to change as a consequence the 



interval is going to change. For every realisation I have an interval. What 95% confidence interval means 

is, if I were to work with thousand realizations. How many intervals will I have? Thousand intervals. 

Correct. Out of this thousand confidence intervals roughly about 50 will miss the truth. Right.And I show 

this. That's what I show in this graph. This 50, in fact in this case it turns out to be 51.
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Ideally if you have maybe 10,000 or maybe more then you will have better and better, you know, correct 

number of confidence intervals that do not capture the truth. So the 51 confidence intervals that miss the 

truth are what I'm showing you. The centre line is a true 0. I have generated data from a 0 mean white 

noise process. And what do you notice here. I have 51 confidence intervals that have missed out the truth. 

So there is a chance that you would run into one of these realizations. Suppose, I had told thousand 

students in my class, I generated thousand realizations, I gave one realisation to each student, fifty one 

students will come back and tell me that this is a confidence interval. That means, if I were to conduct the 

hypothesis test that the mean is 0. So if I want, this is a null hypothesis that I am testing which is called a 

significant test. In a class of 1000,949 students will they reject or not reject the null hypothesis.

Will they fail to reject the null hypothesis or they'll reject the null hypothesis. 949 students.

Failed to reject.



Failed to reject.Right.Becausethe way you use your confidence intervals for hypothesis testing is your 

construct the confidence interval and then you ask if the postulated truth is in the region. The postulated 

truth is 0. In a class of 1000, 949 students will come back and tell me that there is a confidence interval 

that contains 0. Therefore they will fail to reject the null hypothesis. That means 0 is also possibility. The 

remaining 51 will reject the null hypothesis. And you may be one of those lucky ones. If you end up with 

such a realisation for which the confidence interval does not capture the truth then you will end up 

rejecting the hypothesis, null hypothesis. That is what we mean by 5% significant level in hypothesis 

testing, right. That 5% significance level has a very close connection with your degree of confidence.

You can look at look up on that significance level orconfidence, doesn't matter. That means, what is the 

truth. Truth is that null hypothesis holds. But there is an error. There is a chance of rejecting the null 

hypothesis and that chance is 5%. If you construct a 95% confidence interval. If you work with a 99% 

confidence interval 10 students or 11 students will come back and tell me that the null hypothesis has to 

be rejected. Right. That is what we mean by Type 1 error in hypothesis testing. The null hypothesis is true

and there is a probability that I rejected. That probability is closely related to your degree of 

confidence.They are all one and the same.

So in general hypothesis testing can be conducted in three different ways. And you should, you know, at 

least if you are not familiar, I've already told you,you should sit through the lectures on statistical 

hypothesis testing or even the lectures here. I will tell you that basically there are three different ways of 

testing.
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One is a critical value approach, where you compare your observed statistic in this case sample mean with

some critical value that you determine based on the significance level or you use a P value approach or do

you use a confidence region approach. As far as this course is concerned, in general also you can use a 

confidence interval approach. Each has its own charm but all the three will give the same result.

You cannot come back and say my critical value approach failed to reject the null hypothesis. Whereas 

confidence interval approach rejected it. No. If you maintain the same alpha for all the three, all these 

three approaches to hypothesis testing will give you the same result. The question is which is the most 

convenient. And I find the confidence reason approach a very convenient and elegant. But there are 

statisticians who would argue in favour of the P value approach or the critical value approach. Yes, I 

agree. I mean in some, in the design of experiment, from a design of experiments viewpoint and so on, the

p value approach can be useful. But as far as testing is concerned confidence interval is very good.

So for all practical purposes in this course we will adopt the confidence interval approach for hypothesis 

testing. But the question is, in what kind of situations do we run into this hypothesis test? Well when you 

build models what are you going to do, you're going to estimate parameters at least parametric models, 

you're going to estimate parameters. And we want to know whether that's true parameter is 0 that means 

have a inadvertently included a parameter that was not supposed to be there in the model. Then you have 

to conduct these kinds of tests which are called significant steps.



In general, when you replace this Mu with theta, right.Then any test of this form is called significance 

test. That means you want to look at theta hat and -- theta hat looks very small. Should I ignore it or not? 

That is what we mean by.That means is theta hat statistically significant or not. Associated to this question

is this hypothesis test. Theta is equal to 0 and theta not equals 0.

So what is a procedure there, you construct a confidence region for theta and search for 0, if 0 is 

contained in the interval then you fail to reject the null hypothesis. So what do we do? Suppose I 

discovered that a parameter, for a parameter I have failed to reject this null hypothesis that means, it 

doesn't pass a significant test. So what is the conclusion?What is the consequence of that? What do I do? 

Do I go and post this live on Facebook. What is it.? Well, many things are posted on Facebook these days 

including the saddest parts also. So what do we do with this.?

Remove that parameter from the model. And re-estimate the model. Please, don't include some1000 

parameters in the model and say , sir, 995 of them are actually turned out to be insignificant. Please take 

the remaining 5 and go home and be happy. You can say that. It's your duty to throw away those 995 

parameters re-estimate those 5parameters. Whyshould I re-estimate those 5 parameters?

I've spent some food in feeding those 995 guests.995 people who did not do anything for me.Right. They 

didn't do any work for me. So why should they actually do that. So I rather re-invite those 5 people, feed 

them well and make sure that I get the best work out of them. Right. So I should re-estimate the model 

with the significant parameters and then report that model. You can't leave things halfway through. This is

something that I expect even in the final exam.When I give you data and you have done an over fitting 

and it's possible. All of us do [31:21 inaudible] with the over- fitting. You recognize that you're working 

with an over-fitted model then you should remove those redundant parameters and re-estimate and report 

the most compact from. Okay. So this concludes the discussion on the properties of estimators. Of course,

one thing that I have not spoken about but I have elaborated in the lectures is that.
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How to construct a confidence region. There is a procedure and that procedure involves determining the 

distribution of theta hat. That is why we need distribution of theta hat. And the only thing that I can tell 

you is, for linear estimators it's easy to come up with an analytical expression for the distribution of theta 

hat. Why because I have a central limit theorem. For non-linear estimators, it's quite difficult. And 

generally in in the modern era, one uses this Monte Carlo method or Bootstrapping methods and so on to 

figure out F of theta hat.Once you have F of theta hat from there you can conduct your hypothesis test or 

you can construct confidence regions. In some cases, you have asymptotic results. In fact a lot of times 

you only have asymptotic results, that means distributional properties and under large sample cases. And 

that is what we use by and large in in this course. We use a large sample distribution properties or 

asymptotic distribution properties. Generally it turns out to be that theta hat is Gaussian. In all our 

analysis, except depending on whether you're dealing with power spectrum or power spectral density, 

variance and so on. Even in such cases the large sample case, we know, I square tends to Gaussian. So 

you should expect in some sense asymptotic Gaussian distribution. 


