
CH5230: System Identification

Models for Identification 3

So let's get going today we'll discuss the parametric models and also briefly talk 
about predictions. Yesterday we studied the non parametric descriptions but 
ultimately we developed a parametric model and therefore it's important to know
what are the different model structures that are available. I'll also briefly talk 
about the features of each of this parametric models but then the rest of the 
story will be completed after we discuss estimation. That is, what is a 
consequence of choosing a particular model structure and so on. So if you look at
the general parametric model family, we know already what parametric model 
means, essentially it's a consequence of parameterizing the impulse responses 
of the respective models and we have discussed this at length. Eventually we 
write the parametric model in the transfer function or the rational polynomial 



form. But mind you there are other ways of parameterizing the models. This is 
not the only way. However this is a popular way of parameterizing the model, LTI 
models. 
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So if I assume that G is parameterized in this way that is as B over F where B has
a set of parameters it's a polynomial, f is polynomial it has it's own set of 
parameters and likewise h is parameterized as C over D. Then the goal in 
identification is given input output data estimated parameters of B C D and F and
in addition we should also take into account that there could be a delay. And the 
delay estimate is typically obtained from the non parametric modeling part. 
Either you look at the impulsive response or you'll use the phase of the cross 
spectral density. We have not talking about how the cross spectral density is 
estimate and so on, at a later stage we look at that. So the general form of this 
polynomials have given on the screen for you. As you can see there are a 
number of parameters that have to be estimated for the general parametric 
model. Now you can work with much simpler models than this. In other words, 
you do not have to have all the polynomials being active. Right. For example. I'll 
come back to that slide.

For example, if I set a AFC and D to 1 which means I have decided there is 
nothing to estimate there  in those polynomials then I get an FIR, right. You can 
see that clearly because what you have is Y equals B over F u. So you have Y 



equals B over F. I'm going to suppress the dependency on a shift operator plus C 
over D e. Again BCDF, they're all polynomials I've just suppressed a dependency 
on the shift operator. If F is 1 and then C and D are 1 then you get so F equal C 
equals D equals 1. Then you have the FIR model. Right. Because B is a finite 
order polynomial. So depending on what you assume about each of these 
polynomials you'll get the specific model structure. 

But this is not just some video game that is, okay. Now I'll try setting C and D to 
1. Let me try if this fits. It's not exactly that. In fact, it's much, much better than 
that. It's not just a guess game there. Setting a certain polynomial to unity or not
setting it to a unity. Has its implications on what you assume about the plant and
how you assume the uncertainties are entering the process measurement. Okay. 
But before we discuss the different possibilities it is customary to actually-- I'm 
going to skip we've already written this. It is actually customary to write. I'm 
sorry this is what I want to discuss-- to extract the commonality between B and F.
Sorry the F and D polynomials, they are the denominator polynomials. If you look
at it F captures the dynamics of the plant model. D captures the dynamics of the 
noise model, right.

It is possible depending on how the system is wired, how the noise enters the 
system and the measurement and so on that the plant and or the deterministic 
and noise model channels can have common dynamics. We would like to 
highlight that common dynamics and capture that in a so that now we are just 
rewriting the same model. Yeah, I have used the same notation F and D but now 
you have to understand that F and D have nothing in common. Whereas in the 
previous model F and D could have some factors, some poles common in them. 
Now we have taken out all the common poles when they say common dynamics 
are essentially common poles and put them into a of q. When a of q is 1 in this 
kind of a structure. This is called a prediction error model structure and structure.
Then you have-- you are explicitly stating in this when you set a equals 1 that 
look there is nothing common between plant and noise model as far as the 
dynamics are concerned. Typically in the numerator you would not have much in 
common. It's only the dynamics that can share some commonality and then you 
are saying look there is really nothing common that the plant and noise models 
share. On the other hand, if a is not equal to 1. You are saying that there is 
something common to the deterministic and the stochastic channel. But what 
does it mean, does there exist a physical system like that? Well, most of the 
times, no. But mathematically that can offer some convenience as we shall 
shortly discuss. 



So hopefully now you understand what the a stands there for. Now depending on 
what you assume for each of these polynomials the models get different names. 
So as I said, if you assume AF C and D to 1 then you'll get an FIR  model. On the 
other hand if I assume that F, D and C are all one which means that A and B are 
not 1, it's understood. Whatever has been set to 1 is 1, whatever has not been se
to 1 is not 1, I have to estimate it. So when I set F, D and C to1 I have an ARX 
model we'll talk about each of this model structure soon. And the other model 
that's of interest is OE, of course, ARMAX models are also equally interesting. 
Where you assume that A, C and D are 1. No. As I said, you should not think of 
this as a game as a play where you decide, okay, this polynomial should be 1 
that polynomial should not be 1and so on. It has its own implications and it'll 
become clear when we talk about each of these model structures. In the general 
form where you don't have anything in common that is you're going to estimate 
B C D and F then we have what is known as a Box-Jenkins model structure. Again
we'll talk about that briefly. What is more important for you to remember? Apart 
from remembering these names you will get familiar with is that assuming a 
particular model structure means three things. One, that it has its implications on
how you are assuming the uncertainties are affecting your measurement.
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 That is one implication. And secondly, whether G and H jointly or independently 
parameterized. And at this point you may not appreciate so much but if you 
recall the discussion that we had on liquid level case study. I had mentioned at 
that time that if you have g and h being jointly parameterized that means you're 
kind of tying both hands together. Then there is going to be a limitation. First of 
all in your ability to explain large class of processes and theoretically we shall 
realize later on. That it has its bearing on our ability to recover the true model 
that is the third consequence. In fact, a very important result in open loop 



identification is that if you have g and h jointly parameterized then there's no 
guarantee that you will actually recover the true system. Yet, people work with a 
lot of such models. In fact, the familiar ARX's model assumes that that is joint 
parameterization. Whereas the output error model and the Box-Jenkins model 
have independent parameterization. Of course in output error model the noise is 
not even parameterized. But still we say there is nothing in common. 

There are some theoretical advantages with working in working with those 
models structures. Typically you can begin with an OE model or an ARX model. If 
you begin with an OE model there are some advantages. While you begin with an
ARX model there are some advantages but there are demerits to both. But for 
the output error model, the disadvantages outweigh the advantages. So a 
general choice of model if you don't know anything should be an output error 
model. And we'll talk about that. So let's talk each of about each of these models
structures a bit more in detail. So the first in order, of course, we are 
disregarding the FIR model.
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 Now if you realize, I have put the FIR model in the parametric model family. But 
earlier, that is yesterday when we discussed non parametric models there also 
we discussed FIR models. So this FIR model is like a cat on the wall. It belongs to 
both. It's like a joker card and deck of cards. It can be viewed as a parametric 
model. And it can be viewed as non parametric model, both. Okay. So let's move 
on to the ARX model. The ARX model or the Equation-error model as it is known, 



the full form of it is auto regressive exogenous model is a very popular model for 
one reason and I'll talk about that reason in the next slide. But look at the 
architecture of an ARX model. It says, G is b over a and h is 1 over a, which 
means the plant and noise models completely share the dynamics. And it's hard 
to imagine a physical process that has that kind of an architecture. Because you 
believe that vk contains effects of output disturbance. Why will it affect the 
output through the same channel as the input? Right. Suppose vk is typically, vk 
consists of sensor noise effects of unmeasured disturbance. So why would you 
think that this output disturbance or sensor noise will affect output in the same 
way as the input? It's actually quite unrealistic and it is indeed the case, it is 
unrealistic. Yet,  these ARX models are extremely popular. 

People don't even know that they're working with ARX models. Many people 
don’t even know. They just write an equation. You know the standard difference 
equation that you write directly in terms of measurement. That actually works 
out to be an ARX model. Now the other thing that I want to say is as much as you
remember what G and H are or what is a parameterization for each of this 
models structures, you should also be equally comfortable with the difference 
equation form. Okay. The writing in the transfer function form is helpful because 
it gives you compact representation but ultimately when you estimate the 
parameters, when you implement the model it's a difference equation form that 
comes handy. So I have given you the difference equation form for ARX model 
structure. As you can see, it's a linear difference equation for the measurement. 
And observe something here ek which is a white noise enters the equation 
straightaway. In the output error model ek enters the measurement, so you see 
the difference. Here, ek is entering the difference equation, difference equation 
for the measurement. Whereas in the output error model structure as you'll see 
shortly, ek directly enters a  measurement and that is why it's called output error
model. 

This error that we're talking about is white noise. Here ek is entering the 
equation and you can say that is one of the reason it is called equation error 
model. There is another reason but we'll not worry about that. These are very 
popular because when I write the prediction form of this, what would be the 
predictor? Suppose, I had-- I have an ARX 1, 1, 1. Now, this notation you should 
get used to.
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 This corresponds to the order of A or in other words, na, this is nb and this is 
delay nk. Because this is how you will specify in the MATLAB routine as well. You 
have to specify, how many parameters you have in the a polynomial? How many 
in the B? And what is the delay? The delay information comes from the non-
parametric model.

And you have to supply at least in the [SIS ID] tool box you have to supply the 
number of parameters or specify in the alphabetical order of the polynomial 
names. So for example, in ARX it's okay, you have a and b. In ARMAX, you'll have
ABC. In OE,  you will have B and F. Okay. So you should not get confused because
there you specify NB, NF and so on. So it is the alphabetical order unfortunately 
that you have to keep in mind. Anyway, so if I have an ARX 1, 1, 1 then the 
difference equation is y k plus a 1 yk minus 1 equals B 1 uk minus 1. Alright. So 
that is difference equation form. Is there something missing? Plus e. It's 
important. Now I just know said that his ARX models are popular because the 
predictors are the predictions that I'm going to make, predictions of what of the 
measurement. Why are linear in parameters? And let's see, why that is true? 
Typically we're interested in one step ahead prediction. So the construct the one 
step ahead prediction, we'll do,  we'll learn the formal way of constructing the 
one step ahead prediction shortly. But if you were to look at it, how will you write 
the one step ahead prediction? You take all the terms that you know to the right. 
By the way, when we write here, typically we say, model is also given. Maybe in 
the previous slide, I should have talked about this. The general. If you look at a 
general polynomials here, the pragmatic family, there is a theta that we talk 
about. This theta consists of all the parameters that your are estimating, right. 



That is now understood somewhat obviously. So here, what would be theta? A1 
and B1. Very good. So theta would be A1 and B1, so if I were to be given A1 and 
B, If I were to be given all the measurements up to  k minus 1. What would be my
prediction of y? That is what this notation means. And meanwhile conditional 
expectation is the best prediction in a minimum means square error sense.  So 
when you apply that all you have to do is, rewrite this as minus a1 plus b1, so 
now what would be the predictor? Or what would be the prediction expression 
here? What would I get? If I look at the right hand side terms, I'm giving 
measurements up to k minus 1. I'm also given the model. Then what would be 
my prediction? Sorry. Simply RHS, that it? Without error. Why is that? Because 
ek.. White Noise by definition as there is no information in the past that you can 
actually use to improve the prediction of  ek beyond its average. Right. And we 
assume ek to be 0 mean. 

So the first term is known because I'm given both I'm also given the input and 
the model, the expectation of ek given k minus 1 and theta is going to be 0 
because there is nothing in the past that can actually-- strictly speaking it should 
be the mean. I keep saying that so that you remember it. So now you look at the 
predictor then if I were to ask you whether it is linear or non-linear and 
parameters, what would be your answer? Linear or non-linear in parameters. 
Linear. Right.? Because I can ask several questions, is it linear in u k. Is it linear 
in y. Here we're interested in linearity in theta. Why are we interested in this 
because, ultimately when we estimate the model parameters. So he had we 
wrote it assuming model is given. Suppose model is not given. Then I'll set up an 
optimization problem such that the optimization will drive the prediction errors or
you can say will drive the predictions very close to y. As close as possible to y. In 
that case typically I will drive it in the least square sense. And we know very well,
at least if you don't know you will know shortly and we discuss estimation that 
whenever the predictor is linear in unknowns, you can think of y hat has a 
prediction as an approximation whichever way you like.

Whenever this prediction or approximation is a linear function of the unknowns 
that you are optimizing and you set up a least squares problem to estimate those
parameters we call that as a linear least squares problem. And linear least 
squares problem have unique solutions. That's the biggest advantage of working 
with an ARX model structure. So through this simple exercise you should realize 
that choosing a model structure has its bearing on the estimation effort. If I 
choose an ARX model what kind of a predictor will I get in terms of parameters? 
Linear predictor. So what is a big deal about linear predictor? When I estimate 
the parameters using least squares with linear predictors, when I say linear it's in
linear and parameters. I have a unique solution. I have an analytical solution that
I can implement.



I do not have to seek a numerical optimum. And that has obviously a lot of 
advantages in many ways. One I got a unique solution, two it becomes easy for 
me to derive the expressions on the errors of the parameter estimates. You will 
see, you learn later on estimation that deriving the expressions for the errors and
parameter estimates is easy if the estimatorof the predicted is linear or of the 
solution is unique and there is a closed form expression and so on. So there are 
several advantages of working with an ARX model. But what is a flip side to 
choosing this ARX model?

I'm sorry. So what does it mean?

First of all my hands are tied. Secondly quite unrealistic. And as I said 
theoretically there is a result which says if the plant and noise models are jointly 
parameterized. Either is no guarantee that you will recover the true model. 
Unless the truth itself is ARX. Unless the truth itself is ARX, is the truth is not ARX
there is no guarantee that you'll recover the G correctly for example. Whereas 
with output error model that is not the case. That's a big advantage with output 
error model. So you can see choosing a model structure means a lot of things. It 
is not just playing around because you have lot of time, you do not know which 
one to work with.

That is what distinguishes you between you and a blind user or a beginner. Who 
does not know, what is a consequence of choosing a model structure? There are 
several implications. What you're assuming about the physics of the problem, at 
least the architecture of the process. What bearing it has on the estimation 
effort, what bearing it has on your ability to recover the true model? You have to 
always keep these three factors in mind and have a checklist or at least answer 
these three before you to the model structure. Until, you know, get used to it. 
There is another advantage to with choosing with working with ARX models 
which is that because you have a unique solution there exists an algorithm which
estimates ARX models of several orders simultaneously.

That should not come so much as a surprise because you have the Durbin-
Levinson algorithm also, right? For AR models, that allows you to recursively 
estimate. So there is a recursion that you can easily build, a build into the 
algorithm so that you can estimate ARX models of various order simultaneously 
also. Not only recursively but simultaneously. So there are several advantages to 
the ARX model computationally from an estimation viewpoint but the flip side is 
this. So you see there is always, there is a tradeoff in nature. And I've talked 
about this and I will. I've given you the expression, for each model structure what
I have given is, the parameters that have to be estimated, their regressor. Now, 
quite often, we write this predictor in a regression form, if possible.



So for example here, I can write this in a linear regression form. What do we 
mean by linear regression? This shy that I have written is a set of regressors. And
theta is a vector of unknowns. When you have a prediction or an approximation 
of this form, we already know, this is a linear equation in unknowns. It's called 
linear regression. And then you can borrow all the ideas from statistics on how to
estimate parameters of a linear regression here. Right. So it's customary to write 
the predictor in a linear regression form and you should get used to these forms 
but not all model structures are friendly. Here, I am able to write this in a linear 
regression form because it's linear in the parameters but very soon you'll see for 
ARMAX for example, that's not the case. So what is it aggressive here? I've 
written it is in this form. But what is shy exactly? 

t is a vector. And what would be the victor? Sorry. Is it yk minus 1 or minus yk 
minus 1? Minus 1 because theta by default is a1 and b1. So minus yk minus 1 
and uk minus 1. Good. So all you have to do is, set up your regressors and then 
use the linear least squares and go ahead and solve the parameters. 
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So that is what I've written here. Of course, I've given this expression here b of q 
inverse yk plus 1 minus a of q inverse uk. That prediction expression will derive, 
how to write? What I'll show you later on is given a model structure straight 
away, how do you write a prediction expression. Her we went through this 
difference equation and then we talked about conditional expectation and so on. 
But you can bypass all of that and straightaway write the prediction expression 
given G and H. Which is very useful. And I also give you the expression for 
prediction error. Because ultimately you will be minimizing be some form 
function of prediction errors. 




