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Now, I'll just quickly review this Discrete-time Fourier series and transforms from this angle of signal and

energy decomposition. We have already spoken about Discrete-time Fourierseries and Fouriertransform 

earlier when we talked about DFT. As we nowwe have learnt there are either periodic signals or aperiodic 

signals. 

When it comes to periodic signals, how do we analyse them in the frequency domain. This is through the 

discrete time Fourier-series expansion and we know a periodic signal,a space periodic signal, not 

aperiodic signal admits only fundamental frequencies and it's harmonics. In other words, If I'm thinking 

of breaking up a periodic signal into its constituent atoms not all the frequencies will participate in its 

construction. It's impossible. Only those frequency, only those sinusoid that have the same period as the 

original signal can be allowed. That's a commonsense thing. And that is why we admit only specific set of

frequencies. And if you look at the equation here. This is called the synthesis equation. You see that I'm 

imagining the signal to be made up of linear combination of sinusoidal and cosines. But not in finite 

number of them. If it was a continuous time signal that would haveinfinite. But if it is a discrete time K 

signal, we know that signs actually beyond a certain point repeat. So we restrict ourselves only up to a 

certain point, this part we discussed earlier.



The bottom equation is called the analysis equation, where I'm figuring out how much of each sinusoidis 

present in the signal and the Cs are called Fourier coefficients, in that expansion. Now the second column 

therefore is giving me how this signal is imagined to be synthesized and analysed, correct. 

The third column is the one that is interesting. It tells me, now this a periodic signal. So I can think of 

energy or power, which one. Power. So this third column tells me as you are decomposing the signal, 

you're also decomposing the power. Behind the scenes what is happening is, on the face of ityou are 

breaking the signal but in the background behind the scenes what's happening is, you are breaking down 

the power. And this relation in the third column tells me, how different frequencies are contributing to the 

overall power. 
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So this expression here that you see,N is the period of the signal. What is there is this average power for 

the signal. And that it says is equivalentto the summation here. From this how can I infer how much each 

frequency is contributing. That subscript n is telling me which frequency it is an index for frequency 

rate,right. N equalsto 0 is the DC component, N equals to 1 is a fundamental frequency,the rest are all 

harmonics. So what it says is, mod CN square, if I pick an Nth frequency, the contribution of this Nth 

frequency to the overall power is mod CN square. And because the fundamentals and the harmonics are 



all so-called orthogonal which means, whatever one atom explains the other atom doesn't explain. It 

explain some other feature of the signal. I mean qualitatively said. I can therefore say mod CN square is 

the contribution of the Nth frequency to the overall power. And a plot of mod CN to the whole square 

verses Ngives me so-called power spectrum. But the frequency access is it going to be continuous or 

discrete. 

What do you thinkNithaya?

Discrete.Good. Therefore it is called a line spectrum. All right.So when I plot mod CN square versus n,I 

would get what is known as a line spectrum and if you are looking at sinusoid then you will see a peak 

depending on the frequency at a single frequency. If you have mixture of sinwaves then you'll see two 

peaks and so on. But you should not use the term density, here. So discretetime periodic signal does not 

have a density either in time orin frequency. Why because the frequency access is also discrete.So density

notion is not there for periodic discrete time signals.
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Now the second class of signals is aperiodic signals assuming there are finite energy. We can construct 

Fourier Transform. Well, they can be absolutely convergent also. And once again we write the synthesis 

equation. That means we imagine how the signal is constructed and then compute the contribution of each

frequency to the overall signal. Once again the same story, signal decomposition here in the second 



column. But there is a big difference. Now that it is an aperiodic signal. You can think of aperiodic signal 

as a limiting case of periodic signal, where the period goes to infinity. And when the period goes to 

infinity, one of the standard things that is always said is, remember the spacing between two frequencies 

in the periodic case is one over the period,is one over n. Between the fundamental and harmonic. When n 

goes to infinity the spacing goes to 0, which means that know the frequency access becomes a continual. 

And all frequencies have to contribute. This is all imagination. Physically the signal may not have been 

constructed at all that way. You should always remember that. Okay. This is just imagination, 

abstraction.Now on in the third column once again. Now this because we have said this is an aperiodic 

energy signal. We will talk about the contributions of each frequency to the energy. And it turns out that, 

if you look at this relation here, the left hand side is energy. And the right hand side is an integral. Correct.
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Now, the area under mod x of F to the whole square gives me the energy. If I'm going to integrate this not 

between minus half and half but within a band. What will it give me? Suppose I restrict this integration to 

some smaller interval of frequency some band of frequencies. What will that integral give me? Energy in 

that time. Okay. So we can never say mod x of F to the whole square is the energy.Like you can never say

f of X is the probability at X. We said that interpretation doesn't hold. But the good news is that now I can

think of a density and that energy density now is mod x of F to the whole square.So, S, we denote this by 

f, so a plotof an-- by the way, this energy densities or power spectrum they're all symmetric. So it's [08:17



inaudible]to plot only for the half, we have spoken about that earlier as well. I'm not going to prove that. 

So I may have a signal whose energy density may look like this. No problem. Or it may look like this.Or 

even may look like this. By the way, since are dealing with discrete time signals, we go only up to 0.5, in 

cyclic frequency. 

So the energy density will tell me what kind of frequency content the signal has, correct. And how much 

it a band of frequencies are contributing to the overall energy. That's the beauty here within a transformed 

domain we are able to talk of energy densities.

Now what is the connection?We have already spoken about power spectrum but what is more important is

this result which you will see for random signals also very soon. 
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We have defined the power spectrum here as mod of CN square. For periodic signals we have power 

spectrum. For aperiodic energy signals we have energy spectral density. You should not, you should be 

very clear. We don't have a notion of spectral density power spectral density for periodic deterministic 

signals. But very soon for random signals, we can define a power spectral density. Okay. We'll see that. So

the beautiful result here is that, the power spectrum and the auto-covariance function for a periodic signal 

form a Fourier pair. 



What do we mean by Fourier  pair? First  of  all,  what can you say about  auto-covariance function of
aperiodical signal, is it periodic or aperiodic? We've already seen it's periodic. So which means, if I just
think of the auto-covariance as a sequence, as a sequence then a Fourier series expansion can be also
given for the auto-covariance function. Like any other sequence, periodic sequence, it says when you
write a Fourier  series expansion for the auto-covariance function the coefficients are nothing but  the
power spectrum. In other words, if I-- if I had the power spectrum I can do an inverse Fourier series and
recover the auto-covariance function. And if I am given the auto-covariance function I can construct a
Fourier  series expansion and compute the power spectrum. Okay. Now more interesting to us is this
energy density relation. Again, same story. So you see the connection slowly emerging between time
domain properties and frequency domain properties. 

For the aperiodic case I will not keep saying energy signals, it's understood we are only worried about
aperiodic energy signals. For the aperiodic case the same result holds but the only difference is that now
they bind-- the relating quantities transform, Fourier transform. So what does the result say? The auto-
covariance function for an aperiodic signal and its energy spectral density form a Fourier pair. In other
words, if I want to construct the energy spectral density for a deterministic signal I can first compute its
auto-covariance function using the expression that I had given earlier and then take the Fourier transform.
I will straightaway get the energy spectral density. Do you see now at least some hope here that I do not
have to-- do you see first of all some similarity here? In order to compute this I do not have to go through
the DFT of the signal route or the DTFT of the signal to arrive at this. I've written this Omega, doesn't
matter, to arrive at this quantity there is another route now. What is that route? Sorry?  

From here I can arrive at this through another root, what is that? First compute f of f and then take the
Fourier transform. Now you see some hope for random signals? Right? For random signals I can arrive at
this notion of spectral. It may-- it's not energy spectral density, we have already discovered that random
signals are not energy signals, what are they? They are power signals. So far random signals we can think
of a power spectral density. Not all random signals will have it but we can think. And if that exists, how
will  we compute it?  We'll  computed auto-covariance and then take the Fourier  transform. So I  have
completely avoided the Fourier transform route. Fourier transform of the signal, which means I can think
of a spectral density function, spectral itself means in frequency. Spectral density function without having
to take the transform of the signal. Without having to worry whether the transform exists. As long as the
auto covariance is transformable. When will-- So this result say is that the Fourier transform of the--
discrete times Fourier transform of the auto-covariance function is energy spectral density, correct? What
is the requirement for this spectral density to exist there for?
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What is the requirement of an auto-covariance function? 

Student 1: It should be [14.07 inaudible]

It  should  be? Now you're  on  track.  It  should be  absolutely convergent.  That  means  auto-covariance
function should also decay. But it did, for the exponential signal we saw earlier if the signal decayed auto-
covariance also decayed. So no problem, it exists. Now that will also give us some light insight on for
what kind of random signals the spectral density will exist, the so-called power spectral entity. For what
kind of  random signals? The auto-covariance function should be absolutely convergent.  It  should be
stationary, that's  okay, but  within  the  stationary  class  further  the  auto-covariance function should be
absolutely confident. Because I can have a stationary random process that need not have an absolutely
convergent  auto-covariance function.  That's  possible.  So we will  come to that  but  this  is  the central
relation, but to arrive at this we had to go through so many definitions. 
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Now what is more interesting is this notion of cross energy spectral density because we are going to look
at two signals. We're going to analyze the system. So now we're asking the question, suppose I have an
LTA system, slowly we are graduating from signals to systems. We have talked about individual signals
until now, now we are saying, what if I have two signals that are the input and output of a system. What
can I say about the relation between-- the spectral density, can I define a spectral density? And time and
again you have to ask until you are clear in your mind, why are we needing these tools? We are looking at
these tools because we want to say something about the system. For example, in the last class, we looked
at cross-covariance function. What did we say are the uses of cross-covariance function? I can figure out--
I can estimate the delay. I can estimate the impulse response coefficients. Everything about the system,
right? So here all saw the cross-spectral density that we're talking about will tell us something about the
system. Same story, it is no different. The tool-- but the only difference is we are looking at the system in
frequency domain. That's only difference. So this result says if I have an LTA system, here, which with
X1 and X2 as input and output then this is the story. Two very interesting results come out. One that the
cross energy spectral density is simply the f of f multiplied by the-- by the what? Are you able to see? 

By the auto energy spectral density of the input. 
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Okay? This I-- I wrote a relation like this in and last out-- to the last lecture where I said, for LTA systems
if an input is producing an output then it's auto-covariance will produce a cross-covariance.  You recall
that result that I wrote on the board? The same story here. And now that we know that covariance and
spectral  densities  share  a  very  strong,  Fourier  bound,  like  in  chemistry  you talk  of  covalent  bonds,
hydrogen bonds and so on, here we say Fourier bond. It doesn't compete with James Bond, though. Okay?
So the covariance and spectral density share a very strong bond. Whatever you learned for covariance
applies to spectral density as well, provided they exists. So we learned that the auto-covariance drives a
cross-covariance, here the auto energy spectral density drives the cross spectral density. How do you think
this result is useful? Can you name one? Think of one application of this, first result on the left hand side
in system analysis. 

In system identification. What is system identification about? Identifying the system, trying to build a
model. In that respect, how is this result useful? That is how you should question everything. I will not
teach you anything that is not related to SysID. Ultimately, it makes its way. So what do you think is the
use? Name one use. What is a system-- typical SysID problem, standards SysID problems? I give you
input and output data and what are you supposed to do?

Student 2: [19.03 inaudible].

Get me some information about the system, either in the model or in non- parametric form. So now apply
that to this situation here, I give you X1 and X2 data. How can you use this relation to say something
about a system? If I give you data can you compute the left hand side, can you compute the cross energy
spectrum density? Right? I can compute across-covariance from the definition. Right? And then from--
take the Fourier transform of that, get the left hand side. Can you compute the right, right hand side? So
what is of interest to me, you have to ask. The f of f. In this-- through this relation I can estimate f of f.
Now I have a new definition of f of f. We have written G as y over u of omega earlier. Now I can write--
I'll write G(f) there or it's basically this. I can write it this way, Sx2 or here in terms of y and u, Ssu of



omega over Suu of omega. Of course, here we're talking of energy spectral densities. So on the right hand
side omega. So instead of taking the Fourier transform of the signals and dividing them I can actually
compute the energy spectral densities and divide. So you may say, what is the big deal? Why is this
definition useful? Can you stretch your imagination a bit and see why this definition is more-- could be
more appealing? Based on the discussion that we just had for random signals. So what happens now, if
you look at the theoretical case, the deterministic plus stochastic case I may not be able to take the Fourier
transform of  the  full  infinitely long measurement  because it  doesn't  exist.  But  we  just  now, at  least
intuitively argued that notions of densities can exist for random segments. Which means I can think of a
cross spectral density between the measurement and the input. That is defined. And of course, so the
input, the spectral density would be defined. Then I can apply this formula to estimate the f of f. So that is
where we're heading slowly, not immediately but slowly that's where we're heading.  The second dilation
is extremely useful in some other-- in fact, in system identification as well as spectral analysis. It says
how the spectral density of the output is related to the spectral density of the input. And how is it being
modified by the magnitude square of the f of f. Okay. So suppose, I give an input whose spectral identity
is constant. Let us say there is a signal,  there is a signal whose spectral-- deterministic signal whose
spectral  density  is  constant.  Can you think  of  that  signal?  Correct.  An  impulse  signal  will  have  all
frequencies uniformly. So what does it tell me? If I give an impulse then the right hand side the spectral
entities constant. Whatever spectral-- I can use this relation in two different ways. If I'm given G, I can
compute the spectral density of the output. Or if I'm given X2, I can use that to estimate magnitude G
square.

You remember  the  quiz  question I  gave you,  the  magnitude squared? So the magnitudes--  from the
magnitude squared at least you can recover f of f correctly up to a phase. Okay. So there are several
advantages of this relation but these are some of the fundamental relations that you should not know. Now
can we do the same for random signals? The answer is both, yes and no. That means can we derive a
similar relations for random signals? Yes, but not but not exactly because random signals are not energy
signals. What are they? They are power signals. So we're-- all we'll do for random signals is take this
relations, replace the energy spectral densities by power spectral densities provided the power spectral
density exists. And again, when will the power spectral density exists? When the auto-covariance function
is absolutely convergence. So that is where we are heading. 


