
CH5230: System Identification

Spectral Representation 1

We've been reviewing the concepts of random processes and we have learned quite a bit about the random
processes and time domain.  And one of the things that  we have learned is  that  the Auto covariance



function really is a very important tool in the analysis of random signals because it tells us whether there
is predictability and the signatures of the ACF as well as the PACF, tell us what kind of models we can
build and so on. Now, as you have seen the auto covariance function is a measure that's based out of time
domain but if you recall it analysis that we have done for deterministic processes, we have learned how to
analyze deterministic processes in frequency domain, right? And one of the things that we have learned in
frequency domain is the notion of a frequency response function. So the question that we want to have
that we have here is, given that, there is a random process that can be represented as a white noise passing
through a filter. Can I make sense for example, out of this frequency response function? Does it have the
same meaning as the one that we have in a deterministic world. So in the deterministic world. We had this
relation with us where, we wrote y[k] equals G q inverse u[k] that's basically y star. And then, we said that
G of e to the minus j omega or G of E to the J omega is the frequency response function. It tells us how
the system acts like a filter, what kind of frequencies are filtered and so on. Can I say, can I give the same
interpretation  to  H of  E to  the  j  omega.  Does it  make  sense? Because,  if  you recall  the  theoretical
definition of G is that, it relates, y of y star of omega to U of omega. Where y star of omega and U of
omega are the discrete time Fourier time transforms. Provided, they exist. Now, can I write a similar
relation here for random signals is what we shall ask and we should answer as well. But before I go and
show you the developments that lead to the answer, let me give you the answer itself. They are answer is
no. That means, I cannot write a relation like this for the case of random signals simply because the
Fourier transform of, or the discrete time Fourier transform of random signals do not exist. Why is that?
Sorry? Giving you, it's a stationary process.

But y[k] will not be essential in convergent.

Convergent in what sense?

In, when k tends to infinity. [3:34 inaudible] when you can't get the full length answer.

No, no. You have to tell me the correct technical word. Convergent, there is a prefix attached to it. No.
When does a discrete time Fourier transform exist of a sequence?

How much ever we [3:51 inaudible] into a [3:51 inaudible].

Really? You want to correct that? So when does the discrete time Fourier exist? We have written many
times. That is for impulse response for any sequence. You just have to extend that result any sequence.
For any sequence, when does the discrete time Fourier transform exist? When that sequences absolutely
convergent. What is the problem? I'm not asking with respect to impulse response. You are forgetting a
very important absolutely convergent. Now absolute convergence implies that the sequence has to decay.
We know by definition, random signals do not decay with time. They exist forever. And therefore the
Fourier transform doesn't exist. I mean, there is a weaker requirement for a DTFT to exist, which is that
its energy should be finite. That is the weaker requirement. The strict requirement is the signal should be
absolutely convergent, weaker requirement is that the energy should be finite. Now, we know, random
signals, if you think of the energy, do you think we have finite energy? Do we know what, and how
energy is defined as? Right. Well, in some sense, maybe you can think of it as some square, absolute
values, we'll define energy shortly. They do not have finite energy either. So in other words, the Fourier
transform of  random signals  does  not  exist.  Therefore,  I  cannot  attach such an  interpretation  in  the
random world. All right. But if you recall, I think I've given this relation, there is another relation that we



wrote here. Did I give you this relation? Even if I don't, you can just quickly derive this right? How do I
derive that? How do I derive this relation from here? Sorry?

Multiply that with y star of omega. Well, I mean, this y star may confuse you because star is also used in
complex numbers to indicate conjugate. Okay? So momentarily will drop the star here. So how do you
direct the solution from here? Basic complex number theory you should be comfortable. I see that from
the quiz that your complex number found fundamentals basics are really shaky. You should know the
concept of a conjugate, right? So think, how do I, how do you derive the relation? What is the difficult?
So, if I don't ask you personally, you won't answer. Anyone is free to answer. Eight magnitude both sides
and square, that's it or multiply both sides to the respective conjugates. You shouldn't be looking at me,
you should be actually telling the answer. So just multiply with the conjugates. If this equation holds for
y, it also holds for its conjugate. And multiply both sides you will get this equation. Now, it turns out that
although this does not hold, we will show that a relation like this holds. In other words, although we may
not be able to define y of omega, like that is we cannot define V of omega, here. We may be able to define
something like this. Something like this. Very close to that, you get the point. I cannot define V of omega
simply because of Fourier transform doesn't exist. But I may be to define mod v of omega square. Now,
that may sound very strange, because how do you get mod v of have omega square, if I can, you cannot
define v of omega, correct? And that is the interesting part with random signals that I do not have to know
v of omega to compute mod v of omega square. And that is actually a very interesting and important, in
fact, concert a milestone result in the analysis of random signals. And that's where, that's a result, central
result that will review in today's lecture, but to understand that, we will have to briefly go through a
journey in the deterministic world again and examine certain notions such as energy and power, and so
on.  Because,  this  quantity, eventually, slightly  modified  version  of  this  for  v  slightly  modified,  not
exactly. This we'll realize that it is nothing but the so-called power spectral density. But we'll talk about. I
mean you have to understand what is energy? What is power? What is meant by density? What is meant
by power spectral density and so on? Because if you don't understand those terms, you're going to have a
tough time understanding the frequency domain description of random processes. So let's begin with
some basic definition. So we here we have the notion of energy, right? Defined for continuous time and
discrete time signals. They're very standard definitions they follow from physics. And we assume that this
integrals exist for the continuous time and discrete time case.
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If they exist,  then we say the signals are of finite energy. And, if you look at some of the examples
exponentially, decaying signal, for example, is an energy signal. On the other hand, what about a sine
wave? Is a sinusoid and energy signal by the definition that we have given? Yes or No? What do you
think,  Aruja? Okay. So  sine wave  is  not  an energy signal.  Good.  Suppose,  I  have a  pulse  of  finite
duration? Is it an energy signal, right? Because you know, the integral is fine. Okay, good. So you have an
idea of what is an energy signal.
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Now, let's look at the notion of power. When we think of power, we think of average power. In a certain,
we don't define general power like that, we just define average power over an interval 2t. And again, for a
continuous time and a discrete time signal, the power is defined as follows in a limiting sense. So we first
define energy. So if you look at the definition here, what we are doing is we are computing energy over an
interval  2t  and then  calculating energy per  unit  time,  average power, because  you're  not  calculating
instantaneous power. You're computing energy one interval divided by 2t and then evaluating that in the
limiting case. And likewise here for the discrete time signal as well. Now periodic signals will have finite
power. Again, when signals have finite power, we say this, that signal is a power signal. Periodic signal is
a classic example of a power signal. Why suppose you're looking at this integral here whether or the
summation and let's say 2n plus one is a period. Then it'd be finite, right? Whenever I evaluate as like m
goes to infinity or not, or 2n plus one, it will turn out to be a finite quantity. Random signals, not all class
of random signals, but a large class of random signals are power signals. Now, when we talk of signals,
one thing you should get used to is, particularly at this stage of your career, of your education, you should
understand that whenever we talk of a signal, we thought we talk of a system as well. All right. So when I
say energy of a signal, you should not just think of the signal, you should also think of the system that is
generating the signal. Likewise, when we talk of a power of a signal, you shouldn't think of just a signal
you should think of the system. The interpretation of energy or power of a signal is that it is the energy or
the power expended by the system to produce that signal. You say, oh, that guy is so energetic. Yeh, he
speaks all the time. So, if you were to record his audio signal, you say, "No, he has a lot of energy," but
that energy is finite. He said that gay so powerful. Of course, that power is not the same as this power. But
if you think of power, we are not talking of the power and the center and state and so on. That power is
different. Power is the rate at which you're expanding the energy. If that is finite, then we say the signal is
a power signal that is the rate at which the system is expanding is putting in that much power to produce
that signal. So when we say random signal is a power signal, the random process is actually putting in that
much power that is energy per unit time to generate the time signal. No signal exist without the system.
Isn't that clear? It's obvious .They cannot exist a signal without a system that is generating it. It cannot



just know be exist on its own. So random, when you say random signal is a power signal, we are saying
random process is a power process it's expanding that much energy per unit time. All right. So now you'll
see random signals fall into the class of power signals, but they're not periodic necessarily. Deterministic
periodic signals are power signals. Now, the other thing to keep in mind is and in general, any signal can
either be an energy signal in general. I mean, there are some weird examples, but if you have an energy
signal, the signal can be energy or power signal. There are some special examples that you can give it an
either energy not power will not get into that, but if you have a signal that is energy signal that means it
has  finite  energy, then  this  integral  will  go  to  zero  or  the  summation  will  go  to  zero.  That  is  not
summation, but the entire limit. One over 2n plus one.

(Refer Slide Time: 15:05)

So imagine that the summation here in the limit as x goes to infinity, if  this is an energy signal, the
summation would be fine, but the denominator will run away. And as a result, the power will go to zero.
So an energy signal cannot be a power signal because you're saying a signal is a power signal if it has
finite power. Non-zero and bounded. Likewise a power signal cannot be an energy signal because power
it is the rate at which you're expending energy. And if that is constant, that means at any time it has the
power to generate the signal that means at any time the signal exists. And if a signal is existing forever,
how can it be an energy signal? It's not possible, right? So a power signal cannot be an energy signal and
vice versa. Just have to have this notion very clear in your mind. Okay, so associated with this energy and
power we have these notions of energy and power densities.
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We have heard of densities before? Where? In probability theory, right? What was the role of the density
there? When could we define density? This, you should be able to answer. For continuous and analytics.
Good. So what was the interpretation of the density or use of density there? The area under the probability
density gives me the probability. Correct. That X will take on values with their interval. Energy density is
also similar to that. The only difference is you are not necessarily associating this density with a random
phenomenon. It is a deterministic phenomenon. So I can talk of mass density. Likewise, I can speak of
energy density. When can I think of energy density when the domain is continuous? So for now, we are
talking of energy density in time. See, when I talk of mass densities, I can think of mass density along the
length or on a surface or in a volume. Different dimensions I can think of. Likewise here, I can think of
now, as of now, energy density in time, that is per time. It is almost like your instantaneous power, right?
It has the units of power. How do you get this? Well, go back to this definition of energy and look at the
integral for example. Don't look at the discrete time case. Why, why shouldn't we look at discrete time?
Because the time is not continuous there.
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So, there is no notion of density there. So, we think of energy density is in time only for continuous time
signals. For discrete time signals, there is an alternative and we'll talk about that. That will be the center
of our discussion. So, if you look at this integral here, the area under mod of x(t) Square. Gives me the
energy, in a certain interval, correct? So, I can attach your interpretation of density in time two mod of x
of t square. Right? Magnitude square of x of t. And that's how the notion of energy density is one. Is it
clear? Likewise, I can define power density. These are the units of energy per time or power per time.
Now, what do we do for discrete time signal? So what are we going to do with these densities by the way?
They're going to, I'm going to do the same thing I did for, with a probability densities. What did I do with
probability densities, compute the probability. Anything else did I do? Did I use the probability density
function in any other way? Not estimating. Sorry? Did we estimate everything as of now? No. What did
we do? With the density function what else did we do? Did we have a party? What did we do, man?

[19:11 inaudible].

Sorry.

Compute that may joined [19:10 inaudible].

No, define the moments. So, we never say estimated, we defined the moments. Mean, variance and so on.
What is the mean and variance tells me? Mean gave me the center of outcomes. Variance gave me the
idea of spread, right? With this energy density is also, I can define a center of activity of the signal. Okay.
We say that the meantime of the signal. Around what time did the signal really exist? Right. An average
time. For how long roughly existed that is a measure of the spread, that is what we call as duration in
time. What we call a standard deviation for random variables, we call us duration for these signals. All of
this can be defined using this energy or power densities. All right. But we don't get into that. If you want
to know more you can go and listen to my online course on introduction to time frequency analysis and so



on.  So there,  we work with these moments  of  density functions extensively. So,  what  do we do for
discrete time signals, right?

(Refer Slide Time: 20:21)

We cannot. We cannot think of this energy or power densities in time. However, the good news is that, I
can think of this energy density or power density for discrete time signals in some other domain. That
domain should be continuous and we call  that  as a transform domain.  And that  transform domain is
nothing but the frequency domain. You can look at some of the domain also, it need not be frequency, it
could be wave length. For example, wavelength domain. But we will look at Fourier domain because we
know Fourier  domain or  frequency domain analysis  gives  us  a  lot  of  insights  into how the systems
behave. Ultimately, this is system identification course, there's not signal identification course, right? But
without knowledge of the signal analysis we cannot do a system analysis. And that's why, every now and
then we go back to  signal  analysis and then come back to systems.  So that,  when we move to this
frequency domain, we will encounter this notion of energy spectral density and power spectral density
and so on. Alright. So let's move on now. It turns out that, yes, right.

What will the capital T over here?

Capital T is the same T, oh, sorry. Here, this is the T.

So, if T tends [21:48 inaudible]. Infinitely or [21:49 inaudible].

No, T doesn't tend to infinite. It is the power density over the unit time that powers the, yes, I'm sorry,
there should be a limit there, t going to infinity. But then, yeah, that's perfect. Correct. So you observe
here? No, you don't let the table to infinity. I take back that. You look at this here. Let's say, this is not 2t
but some T prime. T prime is 2t. Okay? The symbols, unfortunately, notation is confusing. You absorb



into the integral. So let's define a T prime. It's a good point that you made. I should have noticed that. So
let's define T prime as 2t, so that I can write the power as, you know, I can even shift from minus T to T to
zero to T prime that doesn't matter. X of t whole square by prime, of course, then I will [22:47 inaudible]
keep it here DT, that's fine. Now the area under this, so what is this interpret? [22:55 inaudible] correct?
Of the signal. The area under this quantity is going to give me the power. All right? Normally we don't
talk of power densities. Because it depends on this T. And that power density keeps changing as I keep
changing  T.  So  the,  the  power  density  itself  now  is  depend  on  the  interval  that  you're  analyzing.
Therefore, we don't refer to power densities in time. All right? But that's a very good point whereas the
energy density is independent of that. So, gamma of T is rarely used in practice. S of T is used widely.

(Refer Slide Time: 23:34)

But you should keep telling yourself we are looking at deterministic signals.
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Now, the interesting part is that we just know we said for discrete time signals we can and we will see
shortly we can define densities in frequency domain. We couldn't define density in time domain. The
interesting  part  is  that  these  densities  in  frequency domain  have  a  strong connection  with  so-called
covariance functions. We have already learned what our covariance functions. But we learned for random
signals. But we don't know what how covariance functions are defined for deterministic signals. But it
turns  out  the  expressions  are  similar,  their  roles  are  similar.  What  was  the  role  of  covariance,  auto
covariance function in the random world, random signal world, it told us what is the dependency what is a
correlation structure, what kind of a linear model can be built and so on. The covariance functions in the
deterministic world also play the same role except that you don't have expectations. You will now work
with signals in time, purely. Whereas with random signals, we looked at the on ensemble. So if you look
at, now the cross covariance function definition, there are two definitions, one for periodic signals, and
the other for a periodic signals, finite energy, a periodic signal. So let's look at the periodic one. That's
given an equation for, the cross covariance, for zero mean periodic deterministic signal, sorry between
two zero mean periodic deterministic signals is given by this expression.
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Doesn't it look similar to what you saw for cross covariance between two random signals but there are
some differences. The first differences is, I'm not averaging across an ensemble instead, I'm averaging in
in-time. Because now a single realization, there's no notion of realization, whatever signal I have is the
truth of x and y. So I'm taking this pair of products, I should have mean-centered, but I didn't mean center
it. Why? Because have assumed to be zero mean. Okay? So I'm just taking this pairs and then actually
walking averaging in time. But since this is a periodic signal, they both are periodic signals with the
common period we only need to evaluate it over that common period and then take the average that is
what we are doing, all right. And as usual, instead of working with covariance function we work with
correlation functions. So this is the cross covariance and correlation for periodic signals. When it comes
to periodic signals, I'll have to consider the entire time of existence. But not all a periodic signals qualify
or, you know, can you can define a cross covariance function for all a periodic signals. They should have
finite energy. That's important. Because this summation has to converge. For periodic signals, there is no
such qualifier. So qualification that aperiodic signal should have is, like we say B-Tech, PhD and so on, it
should have energy. Next to it, it should have energy. If that is satisfied, then the cross coherence function
is defined now, there is no averaging in time, and so on. Because if you average in time, it will go to zero.
Here, we are not worried about averaging. They're just saying over the entire existence, compute this
product and that is cross covariance and then cross correlation is as usual, the normalized version. You
should quickly recognize that when you evaluate at lag zero, and also set x equals y, what do you get in
the in the second case here, let's say x equals y and you evaluate at lag zero? What do you get?

[27:54 inaudible].

That's what. What we call as variance for random signals, here we are, the variance for the is the auto
covariance  at  lag  zero.  There,  we  use  auto  covariance,  right?  Of  course,  auto  covariance  is  a
straightforward specialization of this, cross covariance function. All I have to do is replace y with by x.
Now that is what leads us to the auto covariance function.
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Now,  an  important  feature  of  this  auto  covariance  function  for  at  least  deterministic  signals,  very
interesting and this is used widely in signal analysis is that, it inherit the properties of the signal, features
of the signal. For example, if the signal is periodic, you can hope for the deterministic signals only. So
now you  should  be  well  versed  with  the  notion  of  the  definition  of  covariance  functions  for  both
deterministic and random signals. And you have to keep asking, why on earth am I being tormented with
this? That's because we're dealing with composite systems.  We are dealing with a deterministic,  plus
stochastic. I need to understand the definitions of covariance of both parts. Then, tomorrow when we look
at unified system we will figure out how to unify these definitions. All right. Already, one unification
we'll learn today. So if you look at the deterministic signal, the auto covariance is periodic with the same
period as the signal.
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So, let me show you examples here. 



On the left you have a cosine and I'm just giving you, you can plug in this cosine into the definition here
of the auto covariance function in equation six and show that the auto covariance is half cosine two pi FL.

(Refer Slide Time: 29:53)

You see that it has the same period as a signal and I'm just showing it auto covariance here. I'm not
showing you the signal, but this example is taken from the text you can look up the text for more details.
On the right hand side I have an exponentially decaying signal. So it qualifies for, that is, it has this



qualification for me to apply the notion of auto covariance. Although I've not defined for auto covariance
for energy signals. This auto covariance that I've given here is for periodic signals. How do you get the
Auto covariance of energy signals? Just use the same definition here, that's all. Replace y with x. That's
all. When you do that you get the auto covariance theoretically as this expression and when you plot, it
looks like this. It has exactly the same the decay rate. [30:46 inaudible]. Okay? As the original signal.
This is used widely in many, many applications. So what this means is that if the signal is a sine wave, I'll
get an auto covariance also with sine wave with the same period. There are some advantages to doing this,
which we'll talk about hopefully later or maybe you can refer to the lectures on time series where I talk
about the  advantages of this.  The more important  result  for  us is  the  relations  between this auto co
variances or cross co variances and this energy then densities in a transform domain.

(Refer Slide Time: 31:30)

So now we'll move on to the transform domain. So now that we are moving into transform domain, just a
few  words  on  why  one  should  look  at  transforms  have  already  spoken  about  this  long  ago.  What
transform world can get you? It can give you a convenient way of analyze, it can give you convenience of
analysis in the new domain certain features that are not so obvious in the raw domain become highlighted
very quickly. And the classic example that you will always encounter is this periodic signals embedded in
noise.  And,  when you look at  the  power  spectrum of  such a measurement,  then the periodicity  gets
highlighted very prominently in the power spectrum as a peek at a particular frequency. So what you
couldn't see in the raw domain with the naked eye, you will be able to detect that image spectral domain,
that, yes, there is a periodic signal embedded in noise. That's because of the way the time domain features
map to frequency domain. So analysis becomes easy and in this analysis, typically, you should always
watch out for this. It's not necessarily that all texts and articles will point this out clearly, there are some
good texts that will find this out clearly. And that point is that in most of the cases that transforms begin
with,  begin  with  the  decomposition  of  the  signal.  Analysis  of  the  signal  and  quickly  move  on



decomposition of the energy or power. What we mean by decomposition is, every transform involves
some  analyzing  function.  Like  in  Fourier  transform,  you  have  sinusoids.  So  what  you're  doing  by
transforming the signal is, you're breaking up the signal into these atoms called sinusoids. So you think, in
physics, in science, we say the entire world is made up of atoms that has proton, electron and neutron. In
signal world, we think of the signal being made up of some basic elements called atoms and it's my
imagination. For your imagine, that the signal is made up of sines and cosines. So what is the advantage?
There are advantages, as we all know, but what you're essentially doing by doing a Fourier transform or
constructing your career series expansion is that you are breaking up, decomposing the signal into its
constituent atoms. Then you say, how many of these items are there, right? If I give you a compound in
chemistry, you'll say there is a carbon atom, there is hydrogen atom, there's oxygen item and so on, if you
take an organic compound, right? So you have decomposed and then by looking at number of carbon
atoms,  number of hydrogen atoms,  number of oxygen atoms you can comment on the nature of the
compound. Likewise here, when I look at the signal and I break it up into sines and cosines of different
frequencies which depending on what I get, after breaking it up, I will be able to say yeah, this frequency
is present, the rest of the frequencies are not present or maybe these frequencies are dominant and so on.
That is what we mean by signal the competition. But rather than looking at signal decomposition, it is
advisable to look at and that is what is used in all analysis, to look at energy or power decomposition
when you want to analyze the signal. What we mean by energy or power decomposition, the story is the
same. In signal decomposition, we ask the question, "How is each frequency contributing to the signal?"
"To the amplitude of the signal?" In energy or power decomposition, we'll be asking the question, "How
is how much is each frequency contributing to the overall energy or power of the signal?" The same
question is the same, right? Depending on the contributions, we will say, yeah, this is you know, a low
pass predominantly these frequencies are present and so on. The other application of transform domain
analysis is filtering. As we know, I've explained this long ago, you again break up the signal into their
constitute atoms and say, yeah, you know, these items were not supposed to be there, they have come
because of noise or some undesirable features, I only want to focus on these sinusoids, these frequencies,
so you retain only those and reconstruct the signal back that is what is filtering. And this concept applies
to every transform that is used in filtering, not just to Fourier. In Fourier, the atoms are characterized by
frequencies. In wavelength analysis, the atoms are characterized right scales. And the time location center
we say.
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In some other transform, characterizing parameter is something else. Okay. So that is the point that you
want to keep in mind that transforms are using analysis and filtering. Sometimes a mix of both is required
in several applications.
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