
Okay, very good morning.  As I said yesterday we will continue our discussion on
correlation functions and hopefully close the curtains on it.  I will also show you a
MATLAB demonstration of how to simulate an AR or an MA process and how to
estimate it as well.  I will give you the list of MATLAB commands as well towards the
end of the lecture.  Now one of the things that we learnt yesterday is that these
models,  that  is  ARMA models  they  are… the way they are  identified is  by first
looking at the ACF and PACF signatures.  So when you are given data, as you will
see in the illustrative example today also, you will notice that we will plot the ACF
and PACF.  And yesterday I showed you, what are the theoretical signatures for ACF
and PACF of AR and MA processes.  For ARMA processes, there is no such signature
available, that is, all that we know is that both ACF and PACF decay, but when it
comes to order determination of the AR and MA components, there is no provision
as of now, one has to go by trial and error, of course maybe it's possible to turn to
the state space methods, but we will not go in that direction, as of now.  Now the
general thing that one should be equipped with, although ultimately we are going to
deal with data, the reason for discussing this much theory is that you should be an
expert in both theory and practice, because after all whatever, tools you are going
to use in practice are based on the theory.  Now what this also means is that, if I am
given the model of a random process, maybe I am given an MA model, let us say, I
should  be  able  to  derive  the  theoretical  ACF.   In  practice  we don’t  use this,  in
practice we estimate AC.  But suppose I want to carry out some theoretical analysis
for… for a given MA process and I want to determine how the ACF looks like.  Then
there are two ways of looking at it, one is just to apply the definition of ACVF to the
given model and then evaluate the resulting equations.  The… although the final
goal is to arrive at the ACF, generally we begin by estimating ACVF, that is auto
covariance and then move on to auto correlation.
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So as an example, suppose I am given MA1 process, where the governing equation
is VK = EK + C1 EK-1 and I have to determine the theoretical ACVF of this MA1
process, as I always say, when in doubt go back to the basics, proceed in a step
wise manner.  Assume now EK is 0 mean, generally the white-noise processes that
we deal with, we assume to be 0 mean, if they are not, then you can always include
them in your model.  So EK is given to be of 0 mean and of variant sigma square E,
C1 is some coefficient bounded in magnitude.  Now I want to find out, what is the
ACVF of this kind of a process.  How do I proceed, I start with the definition of ACVF
of this kind of a process.  How do I proceed.  I start with the definition of ACVF.
What is the definition of ACVF.  I am not going to write the subscripts, just to save
time and chalk.  So sigma L is expectation of VK-Mu times VK-L-Mu.  Now of course
we are given is E0 mean, the first thing that we should be assured is that the given
model is stationary.
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Now what… what is the condition under which his MA model is stationary?  Is it
stationary for any, suppose I say C1 is some constant, finite value constant, then is
VK stationary.  What are the requirements.  Go back to the linear random process,
right.   The  liner  random  process  says  the  coefficient  should  be  absolutely
convergent,  right.   Now  what  are  the  coefficients  that  we  have,  the  impulse
response coefficients 1 and C1, nothing to worry about.  You can straight away see
that it is stationary.
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 and now you can evaluate the mean, in any case evaluate the mean.  What is the
mean of VK, 0, because expectation of VK is simply the expectation of the right
hand side and we know EK is 0.  So Mu E is 0, we know that.  Therefore I can now
simply write this as expectation of VK times VK-L, as I always say you should be very
comfortable with computing these covariances, not only these auto covariances, but
in general cross covariances and so on.  So now what is the story.  There are many
ways of doing this, the best way is to just simply substitute.  When it comes to MA
processes, in this procedure it is best to substitute for the given governing equation.
So your given VK is EK+C1 EK-1, plug in here.  And then you will have a product of
terms.  How many terms will  you have in the next step, when you evaluate the
product of terms, four terms, correct.  So you would have, what would be the first
term, expectation of, what would you have, expectation of EKE K-L and then + C1
expectation of EK-1 EK-L done.  The third term, third term would be… what would be
the third term?  Well different ways of writing it, so EK… C1 times EKE K-L-1 and
what about the fourth term, +C1 square EK-L sorry EK-1 times EK-L L-1, right.  Now
generally in a time series course, I go by showing, deriving the expression at L=0,
L=1 and so on,  because… because we are in a review mode, as straight away
written the generic expression at lag L.  Now when we say we want to compute the
ACVF, we want to know the values at lag 0, Lag 1 and so on.  Now we can use the
property of white-noise sequence to arrive at the answers for sigma 0, sigma 1 and
so on.  So let's write here, sigma 0, what would it be, plug in L=0, right, what is the
first term, what's the first term, when L=0 and I evaluate the expectation… sigma



square  E,  very  good.   Second  term,  why,  because  by  definition  white-noise  is
uncorrelated with its past or future, whatever.  So expectation of EK-1 times EK is 0.
That is the auto covariance of white-noise is 0 everywhere, except at lag 0 and at
lag 0 its value is sigma square E.  So the second term vanishes.  The third term also
vanishes.  What about the fourth term C1 square sigma square E.  So I can straight
away say it's 1+C1 square sigma square E.  This is the variance of an MA1 process.
In fact now if you stretch your imagination, if you had an MA2.  You should expect to
see 1+C1 square + C2 square, sigma square A.  Essentially the cross terms, all of
them will vanish, only the light terms will prevail.  Alright, what about sigma 1, the
auto covariance at lag 1, again plug in L=1, which of the terms will prevail?  Here
when I plug in L=1, this term prevails, but this, the rest of the 3 will vanish and
therefore I have C1 sigma square E.  I don’t have to evaluate L= -1, in fact you
should see when… at L= -1, you will get the same answer, because auto covariance
is symmetric.  What about at lag 2, lag 2 all the terms will vanish, as you can see.
In fact I can straight away say beyond la1 the auto covariance vanishes.
(Refer Slide Time: 09:40)

This is  exactly  what we said yesterday,  right.   The auto covariance dives down
abruptly  after  which  lag  the  order  of  the  MA process.   Now this  procedure  for
computing, sorry, this procedure for computing the ACVF of an MA process is okay in
this is in for first order, second order, and so on, but then the number of terms that
you have to write down increases as you go to higher order MA processes.  So there
is  a  second  method  of  computing  ACVF,  which  is  through  the  auto  covariance



generating function.  Now this auto covariance generating function is in general
applicable to any linear random process,  but very well  suited for MA processes,
which means you can apply this method of auto covariance generating functions to
AR processes as well.   However,  it  becomes a bit cumbersome to use it  for AR
process.  So what is this auto covariance generating function, it is nothing, but the
two sided Z transform of the auto covariance function, right.  If  you look at the
equation here, equation 9, clearly says that the auto covariance generating function
is a two sided Z transform of the auto covariance function.  What is the purpose of
this, now the purpose of this here, given, yeah I think I missed out showing this,
that’s the most important result, I will add that slide.
(Refer Slide Time: 11:06)

With  the  auto  covariance  generating  function,  you  can  show  that  this  auto
covariance function that you have, D sigma sigma Z is actually nothing but H of Z
inverse times H of Z times sigma square E.  It is… the equation is missing here in
slide.  So the definition is given in equation 9. From this definition you can show that
the auto covariance generating function is related to the model.  So how do you
connect these two now, I mean how do you make use of these two, given an MA
model  or  in  fact  any  model,  you  first  find  out  the  auto  covariance  generating
function.  So here what is H of Q inverse for MA1 1+C1 Q inverse.  Now H of Z
inverse is simply obtained by replacing wherever all instances of Q inverse by Z
inverse, that is what H of Z inverse stands for.  And H of Z, be careful, is the same
story, wherever you find Q inverse, you replace that with Z, alright.  It's not that you



re-write 1+C1 Z inverse in terms of Z, there is a difference.  Now when you multiply
these two here, what do you get? I mean when you evaluate this, therefore G sigma
of Z for MA1, it is for MA1 turns out to be 1+C1 Z inverse times 1+C1 Z times sigma
square E.  Am I right, and what… so what are the terms that you get.  Sorry… So
you get, when you multiply these two polynomials, you get 1+C1 square + C1 Z
inverse + C1 Z and then of course times here sigma square E.  What is the final step
now?  All you have to do is, if you want ACVF at lag L, you look at the coefficients of
Z to the minus L,  because that is what the definition says.  You should not just
remember it as a two sided Z transform.  The other way of remember it, this auto
covariance  generating  function  is  the  coefficient  of  Z  to  the  –L  in  the  auto
covariance generating function is nothing, but the auto covariance at lag L.  So what
is it… how do you read of the auto covariances from the generating function.  At lag
0, I have to search, I have to look at the coefficient of Z to the power of 0 and that is
1+E1 square times sigma square E, exactly the answer here.  And for the rest of the
lags, it is pretty obvious there.  If your answer is correct, you should get symmetric
results, that’s a quick check.  And with this auto covariance generating function, you
can straight away prove also that in general for an MA M process, you will not have
auto  covariances  beyond lag  M.   You  just  plug  in  a  generic  MA M process  and
evaluate, you will see that you will not have any powers beyond Z to the –M or Z to
the M, which straight away goes to prove that ACVF goes to 0 for an MA M process
after lag M.  This is a more powerful method, but you should also be conversant with
this approach, because many a times you may be dealing in some other models, so
you should be able to take expectation, this is how you theoretically evaluate ACVF
of MA processes.
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How about AR processes.  No with AR processes, it’s a bit more involved, but it gives
rise to a set of equations that are very nicely positioned, also very… they have…
they have other benefits also.  Lets quickly talk about it for about three minutes.
Now when it comes to ARP process and I want to find out the theoretical ACVF, you
again begin with the definition.  First of all, how is the… what is the definition of…
sorry what is the governing equation for an ARP process.  So let me actually show
you for an AR1 process, because it's very easy to show, for other processes also it's
quite easy, but it saves time.  So let's take an AR1 process.  What is the governing
equation that I have VK+D1 VK-1=PK, fine.  Now I… what do I want to find out, the
theoretical ACVF, how do I proceed.  Again you start with the definition.  Before we
proceed with the definition, we know that we have to find out the mean, because
that’s required in computing the ACVF.  Now when I have to compute the mean
here, how do I actually compute the mean.  I have to assume stationarity.  There is
no guarantee that this AR model will give me stationary VK.  What is the guarantee,
I… there are many ways of looking at it.  The best way is to recast this AR1 in the
standard linear random process framework, that is re-write this difference equation
as a convolution form.  Once you rewrite this difference equation as a convolution
form, you can apply the condition of absolute conversions of the coefficients.  So
what is the way for… of re-writing this difference equation convolution form, we
have learnt that in the deterministic world.  So you just doe a long division and write
an infinite series.  You will see that VK would be written as essentially Ek+sigma-D1
raised to some J EK-J J running from 1 to infinity.  Alright, now for this sequence to



converge,  your… basically 1+D1+D1 square up to this infinite series,  geometric
series has to converge, because that’s what the absolute conversions condition in
the coefficients is requiring you to do that.  When will that happen?  D1 is less than
1 in magnitude, right.  This series will converge when D1 is less than 1. So an AR
process need not necessarily give rise to stationary VK by default, whereas an MA
process will give rise to a stationary VK, so long as a… constants are finite value.
So there is no such issue with MA processes.  Whereas with AR models, not all auto
regressive models give rise to stationary outputs or stationary responses, only when
the  coefficients  of  the  AR  model  satisfy  some  condition,  you  are  guaranteed
stationarity.  Now here we are able to say, D1 is less than 1 in magnitude, but the
general result is not on the coefficients, what is the guess.  We have talked about
stability in the deterministic world for transfer function models.  Poles should be
within  the  circle,  exactly  the  same  condition  applies  here.   All  AR  models  are
stationary, that is hey give rise to stationary responses or stationary signals, if and
only if  the poles of AR model  are within the unit  circle.   When we say poles is
assumed, you are going to calculate in terms of Z, not Z inverse, clear.  So as I told
you  that’s  the  beauty,  the  moment  we  have  realized  that  there  is  an  LTI
representation,  you  can  bring  in  all  the  theory  that  you  have  learnt.   There  is
nothing new.  In the deterministic world we use the term stability and in the random
world we use the term stationarity.  So you can think of those analogues.  So any AR
model given you to, you should ascertain that it is stationary, if it isn't, you have to
assume that it is stationary and state the conditions.  Even having said, after having
said this many students tend to assume that higher order AR models are stationary,
only  the  rest… individual  coefficients  are  less  than  one  in  magnitude,  which  is
wrong.  The restriction is not on the coefficients directly, the restriction is on the
ports.  So for AR2 don’t think it is stationary only D1 and D2 are respectively less
than 1 magnitude each, that is wrong.  AR1 you know it's only single coefficients
that happens to be the pole and therefore the condition directly translates to that
on the coefficient.  So please keep that in mind.  So with this assumption, we will
assume that this are the only admissible AR models, for this admissible AR models,
what is the ACVF, okay.  So how do we proceed now, now that we are given this, we
are  assured  that  VK  is  stationary.   Since  VK  is  stationary,  it's  mean  must  be
constant, so what happens to the mean now.  How do you evaluate, what are the
mean, you are given EK is 0, what is it so difficult?  They are two ways of doing this,
you are… given it is stationary now.  You can directly go to this equation, right.
When in doubt, just apply the definition, what is mean expectation of VK.  Please
make that a habit, when in doubt go back to the definition and start applying the
definition.  So you apply the definition here, you say expectation of VK+D1 times
expectation of VK-1 = expectation of EK.  Where given VK is stationary.  So what
happens to Mu V 0, that’s one way of looking at it, the other way of looking at it is
by looking at this expression here.  Expectation of VK is expectation of the right
hand side.  We are given the sum will converge and expectation of EK is 0.  So both
ways confirm that Mu V is  0, but only after taking into account the stationarity
requirement, you can do this.  So AR process it's a bit more involved as you can see
for MA process,  it  was so easy, but don’t worry all  the sweat that you break in
theoretical  analysis  of  AR  models  like  is  made  very  easy  when  it  comes  to
estimation of  AR models  involves  only  linear  Lesqui  problem solution ,  whereas
estimation of MA models involves solving a non linear Lesqui's problem.  So there
you have to break this right, here you are breaking it.  So there is a right balance,
life is fair, who said life is not fair.  Theory, if… if something in the theory is difficult,



then practice is made easy.  Alright, so now let's move on and look at how to derive
the theoretical ACVF quickly.  How do… how do I proceed now, same story, but what
we will do is, because I know what… what's going to happen, we are going to do this
at every lag, sigma 0, sigma 1 and see what happens.  So sigma 0, how do I obtain
sigma 0?  You look at this equation here and rewrite this as VK= -D1 VK-1+EK.  For
AR process is there is a good way of beginning, it is not necessary that you have to
do it, but it’s a good and easy way.  Now sigma 0, I know is expectation of VK times
VK because I am given, it has… VK at 0 mean.  Alright, now what do I do, do not try
and plug in the expression for VK.  Like you did in MA1, you will be caught in an
infinite  loop.   You will  go… keep going and going and you entire quiz,  the end
semester… your entire semester will  go out.  The trick here, the simple trick is,
simply multiply both sides with EK and take expectations.  Don’t think that we are
just multiplying and doing something, we are taking… multiplying and then taking
averages,  expectations.   So  when  I  multiply  right  hand  side  with  VK  and  take
expectation, what is the first term that I get?  -D1 very good, simga 1 and then I
have  a  cross  covariance  between  EK  and  VK-1  am  I  right.   So  I  have  here
expectation of EK times VK-1.  What can we say about this.  Here is where, you just
have to apply a very simple logic to evaluate the second term.  If you do not do
that, again there is a every chance that you will be caught in a loop.  Look at this
cross  covariance  carefully.   What  is  it  asking,  what  is  covariance  after  all,
dependence  between  two  variables,  random  variables.   So  here  you  have
expectation of EK with VK-1 and now the question is whether EK influences VK-1 and
if it does by how much, look at VK-1, what does VK-… how is VK-1 generated.  What
are,  you know,  what  are  the terms that  contribute to VK-1.   If  you look at  the
generating equation, whether you look at this or this, VK-1 contains all the effects of
shock waves from K-1 to minus infinity.  Am I right, VK-1 contains effects of EK-1, EK-
2 up to EK- infinity.  You look at this equation here, in place of K you plug in K-1.
Now having recognized that, what is the covariance between EK and VK-1?  It is 0,
b/c there is nothing in VK-1 that is correlated with EK, why, by definition of white-
noise.  This is by virtue of definition.  So we are not doing… we are not learning
anything  new,  we  are  just…  keep  applying  the  definition  again  and  again  at
appropriate stages.  Therefore this term is also 0.  Any questions on this, if you have
any question, you should get it answered at this stage itself?

(inaudible)

Obviously it's asymmetric.

(inaudible)

Expectation of EK VK+1 is not 0, because we VK+1 will contain VK, effects of VK,
which in turn is driven by EK.  Therefore the cross covariance, that itself is a very
simple way of checking, the cross covariance is not symmetric, right done, so are
we done yet, so we get an equation here sigma 0, oh I am so sorry, you should have
corrected me, exactly, so you should, it is not VK-1, may be multiplying both sides
with VK, you are going to correct this one.  Second… the second equation we are
going to, any way that argument was anyway necessary for the next lag.  So now,
now here you have to evaluate the cross covariance between EK and VK, by the
same token, now VK contains effects of EK and all the other past EKs.  By definition,
this EK is only correlated with this term.  So when you evaluate the expectation



here, only one term will prevail, which is expectation of EK times EK, and what is
that sigma square E.  Therefore I can replace this with sigma square.  Okay so now I
have a nice equation sigma 0+, I am going to write it this way +D1 sigma 1=sigma
square E, there is a reason why we write it this way, fine.  What about sigma 1 now,
what do I do about sigma 1, same story.  It's expectation of VK times VK-1, what do I
get.   I  multiply  both  sides  of  the  generating  equation  with  VK-1  and  take
expectations.  What do I get as a first term, Nitya can you tell me?

(inaudible)

I want people have not taken time series analysis to answer.  What do you get, any
answer Nitya?  What is the difficulty?  I  am going to multiply both sides of the
equation there by VK-1 and take expectations.

(inaudible)

D1, ha… ha good –D1 times… expectation of VK-1 times VK-1, what is that?

(inaudible)

Sigma at, correct, yeah you should be very confident.  Zeros are very-very helpful,
okay.  –D1 sigma 0.  What about the second term, we had already discussed that,
that’s going to be 0, so I am not going to write it, well I am going to write it, but still
cancel  it  out.   Now  the  earlier  discussion  comes  handy  and  we  can  say  this
covariance is 0.  So I have a second equation here, you should not tend to think
now,  oh  my  god,  am  I  going  to  solve  infinite  number  of  equations  forever.
Fortunately,  there  is  a  cyclicity.   I  could  not  just  live  with  this  equation  alone,
because I have two unknowns, I am given D1 and sigma square E, that’s what we
mean by, I am given a model.  So we went on to write a second equation, so that I
can hope to see some light and yes so we some light here, we have two equations,
two unknowns.  Always remember, when you are given a model, it means the model
coefficients and sigma square E is given, like wise when you are asked to estimate a
model, you are going to estimate the model coefficients and sigma square E, that
holds.   So now I  have two equations,  two unknowns.   The nice things that you
should quickly  observe is  this  difference equation that  was governing VK is  the
same difference equation that is governing the auto covariance.  Can you see that?
The  homogenous  part  of  it,  the  left  hand  side,  doesn't  it  look  identical  to  the
difference equation that you see for VK, yes or no?  This is the hallmark of an auto
regressive process.  The difference equation that governs VK is the same difference
equation that governs the ACVF as well.
(Refer Slide Time: 31:42)



However, the forcing function is different.  The forcing function for VK is EK.  What
about the forcing function for auto covariance.  This is a very fundamental result,
you should remember in theory of random processes.  It doesn’t matter, in fact it,
whether it's AR or MA.  When I have two, let us say some signal WK, when random
signal driving VK, W need not be white… need not be white.  Some random signal is
driving  a  process  and  producing  another  random  signal.   If  H  is  the  one  that
connects W and V, two random stationary processes, then it is the same H, it is the
same H that connects, you can say the… in fact there is another result that we shall
run.  One result is that, the auto covariance drives the cross covariance.  Here the
other way round.  Here you have the cross covariance driving the auto covariance,
either way is okay.  You can… here I have written auto covariance driving the cross
covariance.  I can also say that sigma WV drives sigma VV.  Why are these results
important?  Okay that is correct.  So given the coefficients I can estimate the cross
covariance or auto covariance.  Of course, I  should be given the inputs there, I
should be given, this result particularly becomes useful, when Week is white, I know
it.  Here also I have used the fact that W is white.  When it comes to estimation,
where the series is given and I have to estimate H, I cannot use this, can I use this, I
cannot, unlike in the deterministic world, I do not know the input.  I am only given V
and suppose to estimate H, like we discussed yesterday.  I cannot use this model, I
mean this kind of a relation equation to estimate H.  I have to move to the auto
covariance domain, because in practice this W is for at least uni-varied processes,
this is EK, whose statistical properties are know and we use one of these to estimate



H, because I can always compute for example auto covariance of the given series.
So this I can know in practice, this I know the way we have written here, because W
is white and the given model, I can then estimate H.  So there are many uses to this
result.  Anyway coming back to the discussion and for an auto regressive process,
the governing equation or the generating equation for the ACVF is the same as that
for the original process.  These set of equations together are known as Yule Walker
equations, and that is then…
(Refer Slide Time: 35:10)

equation 10 and 11, that I  have given for a general  ARP process and I  am just
showing you an example on the screen for an AR2.  I have derived AR1 on the
board, for AR2 the equations would look like this.  You can see, when I have an ARP
process, I am going to solve P+1 equations, correct.  There are two users to this
Yule Walker Equation.  These were discovered somewhere in the 1920s by Yule and
Walker independently, and they are very powerful, they are very popular…
(Refer Slide Time: 35:50)



For estimating AR models, for doing theoretical analysis.  So one use is, if I am given
the model, I can use this equations to determine the theoretical ACVF.  The question
that you should ask is, these equations are for example, in this… for instance in this
example here, by solving this equations, I would get sigma, sigma at 0, sigma at 1,
and sigma at 2, what about sigma at 3.  How will I get sigma at 3, how will I get
sigma at 3, how will I get auto covariance at lag 3-4 and so on.  Just recursively
apply this, right.  This equation is going to recur here as well, you will get sigma 2 +
D1 sigma 1 = 0, sigma 3+D1 sigma 2=0 and so on.  In fact for AR1 it is straight
forward.  You can straight away say the auto correlation at lag 1 is –D1, right.  I
don’t  even  have  to  evaluate  the  first  equation,  if  I  am only  interested  in  auto
correlation.  So the other ACS at other lags are generated recursively.  So you can
see it’s a completely different scenario, sorry… when it comes to AR process.  I am
not  being  very  emotional,  don’t  worry.   so  when it  comes to  AR processes,  as
against  an  MA process,  it  was  so  simple  to  solve  the  ACVF  of  an  MA process.
Whereas here you have to solve a set of simultaneous equations, which are call the
Yule Walker equations.  Now consider the reality, the reality is I am given series and
I am suppose to fit a model.  Suppose I chose to fit an AR2 model, then I solve this
Yule walker equations, where the sigmas are replaced by their estimates.  This is the
basis for so called method of moments.  In the method of moments, what… what do
you mean by moments here, auto covariances are moments.  What is method of
moments, it says first derive the theoretical relations between the moments and the
parameters.  If you look at this equations, the parameters are D1, D2, and sigma



square E.  Those are the unknowns and the moments are the sigmas at lag 0 1 and
2.  We have set of relations between them.  Method of moment says assume that
these relations hold good for estimates as well, which is not necessarily true, why
should  estimates  satisfies  this,  because  estimates  are  constructed  from  time
averages  and  the  two  finite  observations,  even  if  you  assume  ergodicity,  that
doesn’t apply… applies here, but I have only finite samples.  So method of moments
forces these equations to be fulfilled even for estimates and that’s how the Yule
Walker equation or the Yule Walker method for estimating AR models is born.  It
belongs to this class of method of moments.  Alright, so remember this Yule Walker
equations, how to setup this, it just comes by practicing, but once you go back and
derive this for AR2, you should understand how things work out for AR3 and so on.
Generally by hand we do not go beyond AR2, after that we… we use a computer or
some kind of a computational tool.  Now this Yule Walker equations can be solved
recursively and that is what is the Durbin Levinson's algorithm doing for you.  If I
have an AR1, how many equations I am… am I going to solve?  Two equations.  If I
have AR2,  I  am going to solve three.   The other  thing that  you should  quickly
observe is, if I am given the auto covariances, I can first ignore the top equation and
only work out the bottom tow equations to get my parameters… model parameter,
then I go back and plug in and use that top expression to get an estimate of sigma
square E, you understand, you look at the two… three equations here, although
sigma square is unknown, it  only appears in one equation, which is good news,
which means, I can solve for the coefficients first and then use them to estimate
sigma square E.  That is how it is done in Yule Walker equations.  So if it is AR2, sin
fact I am going to first solve two equations, get my D1 and D2 estimates, and then
plug them in to get an estimate of sigma square, clear.
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Likewise AR1 here, if it is an AR1, you just say that the optimal estimate of at least
in  a  Yule  Walker  sense  or  the  method  of  moment  sense  is  nothing,  but  the
correlation itself, of course, negative of the auto correlation.  And then you can use
this expression estimate to find out… to get an estimate of sigma square E, clear.
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