
A very good morning.  We are in the midst of reviewing the theory of random
processes,  particularly  modeling  them  and  yesterday  we  learned  some
critical  concepts  such  as  stationarity,  ergodicity,  and  also  discussed  the
notion of autocorrelation function, which is at its heart correlation measure.
As  I  keep  saying,  do  not  think  of  auto  correlation  function  as  an  alien
measure  or  a  new  measure,  it  is  at  its  heart  correlation,  but  apply  to
observations within a random process.  And the need for introducing auto
correlation, I have already mentioned one or two needs, one is of course to
see  if  there  is  hope  for  any  modeling.   And  I  don’t…  keep  saying  this
repeated,  we are only interested in  linear models  and that’s  why we are
looking at correlation based measures.  So the first need for introducing auto
correlation function is to let's for predictability and then of course there are
other very nice things that come out of this definition and the first gift that
auto correlation gives is this notion of a white-noise process, alright.  And as I
explained to you yesterday, white-noise process is a stationary uncorrelated
random process, that's a formal way of looking at it, but conceptually what it
is, it's it is that ideal unpredictable process in a linear sense.  And why do we
introduce this concept, one when I am sitting down to model a series, that is
a time series, then I need to know whether the series offers any scope for
predictability.   So in  some sense you are benchmarking any given series
against this ideal process and you are seeing if it has properties of this white-
noise process.  If it does have, remember when I say, we check for series
being white or not, we are not looking at values, we are looking at properties.
So  when  we  perform,  what  is  known  as  a  whiteness  test,  what  we  are
actually doing is we are testing if the series has, given series has white noise
like  properties  and  this  whiteness  test  we  conduct  at  the  beginning  of
modeling,  during modeling and also  towards  the end.   Because at  every
stage we want to make sure that whatever we are beginning with has some
predictability and then during the course of the modeling, if  the residuals
have any predictability left in them and if they do then again you go back
and refine your model and the final model that you settle down with should
give you residuals  that pass the whiteness test.   So this  whiteness is  an
extremely  important  step  in  any  modeling  exercise  and  that’s  why  it's
important to be comfortable with this notion of white-noise process.  So the
white-noise process itself has so many advantages or so many, I would say
functionalities, attached to it.  The other role of whiteness process… sorry a
white-noise process is that it  serves as a fictitious input,  remember have
been saying that.  A stationary random process satisfying certain conditions
can be thought of as white noise passing through a filter.  So that is the other
very important role that white-noise process plays in time series modeling.
We have not yet discussed the conditions… which such a representation can
be given, but we have already, in fact we are already on our way.  We have
discussed stationarity first… the first requirement is that the series should be
stationary for us to be able to represent it as white-noise passing through a
filter.  Then there is another condition which is on the spectral density and
we have not defined what a spectral density is.  I just used that terminology



yesterday, but we will talk about it a bit later.  So let's move on now and I
have already spoken of the role of white-noise in time series modeling, when
I say time series modeling, it's to be understood as (inaudible) as well.  Now
as I just said, one of the critical uses of white-noise is… is imagining it to be
the fictitious input that is driving the given series.  And let me give you now
a peak into that, I mean, give you a feel of how it ends up serving as an
input.  Although I am not going to do this formally, but I am going to do this
somewhat informally.
(Refer Slide Time: 04:44)

So let's take a series VK and we know by definition, a random process always
has  an  unpredictable  component,  but  we  hope  that  there  will  be  a
predictable part as well.  So let's split it into two parts as V hat of K given all
the information up to K-1 + an unpredictable component, which is what is the
white-noise.  Straight away you can see white-noise process appearing as an
indispensible component of the random signal, right.  Whether V hat exists or
not, E will definitely be a part of VK.  At this moment you see white-noise as
an indispensible component, as an inherent component of VK.  Very soon we
will show that this same white-noise process, which is inherent to VK can be
thought of as driving VK, that is what we mean by input, right.  How do you
see that.  Well, assume now any form for this predictor, see this V hat can be



anything, as I have explained to you the notation, V hat of K given K-1 means
that I am predicting V, the value of the signal at K, given all the information
up to K-1, when I say information, observations.  I can do this in infinitely
different ways, right I can predict, I can take the average, I can take some
mathematical function and so on.  Let's take a very simple mathematical
function, which is a linear function.  So assume that, now let us say that we
are  going  to  just  use  one  information,  maybe  we  can  use  two  in…
observations in the past.  So I am going to work with a predictor of this form.
Very soon we will  see that predictors of this form correspond to what are
known  as  auto  regressive  models.   You  can  see  the  terminology
autoregressive there, it is regressing on to itself.  So assume, I am not saying
all  processes will  this,  please don’t  make under  impression,  assume that
there  exists  a  process,  for  which  the  prediction  is  of  this  form,  optimal
prediction is of this form, it's a linear predictor.  Now plug in this predictor
expression into this equation here so that you can straight away write this
difference equation form for VK.  Do you see that, all we have done… there is
nothing mysterious about this.  All we are said is, we have… we have used
the tenets of random process modeling or theory of random processes.  We
say that random process inherently  contains an unpredictable component
and  if  it  contains  a  predictable  component,  let  us  assume  that  this
predictable component has a liner form and we have plugged that in and you
can see that there is… now VK has a difference equation form to it.  So which
means by assuming that predictor, this is the predictor or sometimes we will
say prediction  and this is model.  What is the difference between a model
and the predictor.  It's important to know this difference.  Do you see any
difference?  Okay, not necessarily, okay fine, fair enough, but anything else?

(Inaudible)

No that’s not the case, if you… sorry… let's hear one more answer.

(inaudible)

Okay, good then…

(inaudible)

Okay first part was correct.  There is a very subtle, but important difference
between  the  model  and  predictor.   In  fact  model  gives  you  a  complete
description of the process, okay, in what sense, you are right, so predictor
tells me how to compute or how the signal… what will be the value of the
signal at a certain instant in future.  It could be one step, it could be P steps,
doesn’t matter.  Whereas model tell me both, what will be the prediction and
what is being left out, okay so if you… that means in going from here to here
is not so straight forward, you have to… this is only giving you one part of
the picture, this is giving you the complete picture, in going from here to



here, you have to make an assumption of what is being left out, that means
what this predictor has not managed to capture.  Predictor is only telling you
what will be, I mean, it's… it's only estimate of what will be the signal, but it
doesn’t tell you what it is unable to predict, whereas model is telling you
both, from the model you can derive the predictor, but from the predictor
you cannot derive the model in a straight forward way, unless you make an
assumption that whatever,  the predictor couldn’t  predict  is  unpredictable,
where is the guarantee, right.  There is no guarantee that all predictors will
leave out an unpredictable component, suboptimal predictors will leave out
something that is still predictable.  We assume that this is in some sense and
optimal  predictor,  although  I  have  not  stated  that,  in  the  sense  that
whatever, is left out of this one-step ahead prediction, that is unpredictable,
which  is  the  white-noise.   So  you  should  keep this  difference  intact  and
remember this.   Later on we will  again come back to this concept of the
notion of a model and a predictor, but the fact is you can derive predictor or
prediction expressions given a model, but deriving model given predictions is
not necessarily straight forward, unless you make additional assumptions of
what is being left out, okay.  So now coming back to the discussion here, do
you  see  a  striking  similarity  between  this  difference  equation  and  the
difference equation that you have seen for deterministic  LTI  systems?  Is
there is a big difference symbolically or structurally? It doesn't… I mean if
you were to write a second order difference equation, you would write, how
visible this is?  Is this, yeah… So you would write YK+A1 YK-1+A2 YK-2, A =
some, let's say B1 UK-1 or may be B naught UK, if there is no delay and so
on.  So straight away I can give an interpretation to this difference equation
that VK is the response of an LTI system driven by EK.  Of course I mean, it’s
a very inform approach.  I have to establish a few other things, but at least
you get this feeling straight away by looking at the similarity between this
difference equation and the difference equation that you have seen earlier.
By the way this difference equation is called a stochastic difference equation,
because the forcing function is a stochastic signal,  that’s a big difference
between the one that we have seen earlier and that… one that we see on the
board right now.  Now let us not worry about, under what conditions I can
write this, whether this is going to be the form and so on, at least now I am
partly convinced and in fact largely convinced that it may be possible to give
an  LTI  representation  to  a  given  random process,  but  not  to  all  random
processes, that should be remembered.  The random process has to satisfy
some conditions.  The same goes with deterministic processes, right.  The
deterministic  process  has  to  be  linear.   When  can  I  write  a  difference
equation form, the deterministic process has to be linear and time invariant
and  the  response  should  be  in  a  parametric  form,  right,  there  are  three
conditions, but the main conditions are LTI.  Likewise you can expect some
LTI like conditions on the random process, but we don’t use the term LTI, we
do use the linearity term, but in place of time invariance what do we see…
use?  Stationarity.  And in addition, because this EK is stochastic, I have to
impose one more condition, which is on the spectral density, but otherwise,



the LTI assumption carries forward to the stochastic world as well.  Linearity
carries forward.   I  have not defined linearity yet,  because it  was easy to
define linearity in the deterministic world, since there is an input and output,
I can define linearity very easily, but for a random process like VK, which I
don’t know is being drive by god knows what input, I cannot define linearity
straight away, unless I think of some fictitious some input.  Now if I think of
the EK as a fictitious input, I can define linearity.  I can define Stationarity.  I
mean stationarity is defined, but notion of time invariance, everything comes
in, correct.  So I can write here for example, a transfer function form to VK
and  write  here  VK  as  1  over  1+D1  Q  inverse  +  D2  Q  inverse  square
operating on EK.  That’s your H of Q inverse, right the 1 1 over 1+D1 Q
inverse + D2 Q inverse square is your H of Q inverse.  So this is a decent way
of getting an idea as to how random processes being end-up as the… as the
output of LTI system driven by white-noise input.  So look at the beauty.  In
fact  long  ago,  I  would  say  about  seven  years  ago,  when  I  gave  this
perspective, initial days I wouldn’t give this perspective, but gradually when,
you know, when you teach for a long time, you get perspectives.  So when I
gave this perspective, there was one gentleman who came in the class, this
is really surprising as to an inherent unpredictable component turns out to be
the  input  that  it  is  driving  VK,  but  that  is  the  feature  of  self  exciting
processes,  random processes,  because  we  do  not  know the  causes,  you
assume that they are self exciting, there is something within the process that
is pushing the process forward and that something here is EK, right.  So it's
as if you are pulling out a wire that is something within a process and you are
just pulling it out.  It is not truly external to the process, it is just for our own
notation  and understanding,  we write  this.   However,  one should  not  be
drawing complete parallels with this representation or Y or Y star, doesn’t
matter.  The top… in the top one U is exogenous to G, in the bottom that is
for the random process E is endogenous to the random process.  Although I
have shown EK to be coming, you know as if some external think is coming in
and exciting H, it isn't, it is a part of VK… it is a part of VK that is driving it.  We
don’t show that here in this block diagram, but you have to understand.  So this E is
endogenous, where the input here is exogenous.  These are the terms that are used
in the time series and (inaudible) literature.  And it's important to have here this as
capital X, so that you will understand why this arcs and R max come in later on.
What we have here is an autoregressive model, that’s it AR2.
(Refer Slide Time: 17:46)



So now we move on to this notion of linear random processes, where I generalize
this idea.  At this moment, I am not telling you what class of random processes are
friendly to this kind of representation, but let's, there exists a large class of process
and the idea here is now we represent VK as EK driving an LTI system.  Remember
very well that this EK is endogenous to VK.  The moment I say that there is this
situation,  I  can  define a  linear  random process  to  begin  with.   In  fact  a  linear
random process is one that can be given this convolution form of representation in
addition  we  require  that,  you  see  this  condition  here,  what  does  this  condition
remind you of?  In deterministic processes, this was a condition for stability, here
this  is  a  condition  you  can  show  for  stationariry.   Because  one  of  the  key
requirements of stationarity is that the process should not blow.  It's not necessary
and sufficient condition, but it is a necessary condition.  There are many processes,
whose  amplitudes  do not  blow up,  but  can  be  non-stationary,  but  a  necessary
condition is that… a necessary condition is that the amplitude of VK should not blow
up.  There is a chance, right because you are doing an infinite summation there.
Now having guaranteed that EK is stationary by definition, because EK is white-
noise,  correct  and  white-noise  is  stationary.   So  putting  together  these  two
conditions that EK is stationary and the coefficients are absolutely convergent, you
can show that VK is stationary.  So notice now a big difference between the notion
of linearity in the deterministic world and in the random world.  In the deterministic
world,  straight  away  I  can  define  what  a  linear  system is  because  there  is  an
external input and an output.  All I think off is a system has a functional mapping



and I just turned to linearity definition and mathematics, but here I have a problem
right from beginning, because VK is assumed to be self-exciting and there is no
external… although there is I do not know and therefore I cannot define linearity up
front, unless I think of some fictitious input that is driving VK and that fictitious input
happens to be VK, alright I have cut shot a lot of formalization here.  Just to give you
a feel now that VK is being driven by EK.  Now that I think of VK being driven by EK,
straight  away  I  can  define  linearity,  I  can  define  what  are  the  conditions  for
stationarity and so on, okay.  And also you must notice that I have already fixed the
first coefficient to one, we have talked about that for uniqueness.  And EK by default
here  is  Gaussian  white-noise.   There  are  a  few  texts  and  may  be  in  early
developments, which are… where things are assumed to be, sorry EK is assumed to
be IID.  The difference between white-noise and IID, what is IID?  IID is identically
and independent… independent and identically distributed process.
(Refer Slide Time: 21:12)

White-noise only requires uncorrelated nature to be satisfied.  Independent process,
IID process has to satisfy two conditions one is independence, which means there is
no relation between any two observations.  That means there is no hope at all for
billing any model.  White noise says, there is no hope for a linear model.  Identically
distributed, which means that every observation falls out of the same distribution.
So it’s a lot more stringent.  EK being IID or any process being IID is a lot more
stringent than a white-noise requirement.  However, Gaussian white-noise process
alone has a property that it is also an IID process, okay.  White noise process is, a



white-noise requirement is less stringent then IID requirement.  That means not all
white-noise processes are necessarily IID, but all IIDs definitely are white.  The only
exception is Gaussian.  All Gaussian white-noise processes are IID processes, why
because what does whiteness mean, any two observations are uncorrelated.  In
addition, we are saying Gaussian, which means these two observations have a joint
Gaussian distribution.  You can show that for any two random variables, if X and Y
are jointly Gaussian, this is a standard result in the theory of random variables and
uncorrelated,  I  have said  this  earlier  also,  then they are  also independent,  that
means their joint p.d.f. is factorizable as well, that’s a fairly straight forward result to
show.
(Refer Slide Time: 23:08)

You start with the joint p.d.f., that is joint Gaussian p.d.f. and make use of the fact
that they… they are uncorrelated, which means the covariance matrix of X ray and
Y is going to be diagonal, then you can straightaway factorize the joint p.d.f into
product of two Gaussian p.d.f.s.  So that means you have proved independence, but
this is only true for Gaussian white-noise, so it is safe to say EK is Gaussian white-
noise, you don’t have to say it is IID, okay.  so we will assume throughout the course
that the by default, unless otherwise, stated, white-noise is Gaussian white-noise,
any questions?  So this is a definition of a linear random process and we are now
introduced to this linear LTI representation in the same… now in the same way as
you were introduced to the LTI representation of deterministic process.


