
Now very often, not very often, in fact almost always, what we are going to
do is, okay assume that the process is second order stationary, given to you,
no problem.  What are we going to do then.  I am going to collect data and I
am going to fit a model.  But remember when I collect data, I am got to
observe… I am going to work with a single realization, whereas this random
process is a collection of all realizations, which I never get to see.  And my
model is suppose to be able to explain all the realizations, not in terms of
values.  It will not be able to predict accurately, that is the mark of a random
process, but it is suppose to capture the characteristics of all realizations,
whereas I have only a single realization.  So I have to explicitly state another
requirement, which is that I  am going to work with the single realization,
many observations, doesn't matter, may be 10000, million, doesn’t matter,
but it's only a single realization.  But I have to state this requirement, which
basically says that as I collect more and more data and I am going to… that’s
what I am going to do, I am going to walk in time and I am going to estimate
may be  this  covariances  for  example,  because  I  need  to  fit  a  model  or
variance or mean and so on.  All these are theoretically, if you take sigma XY,
Mu y, sigma square X, or Mu X, they are all not defined in time.  Even though
axis V at K1, what does it mean of the… what does it imply when I say Mu at
K1, Mu  of the random process at K1 would mean, I freeze K1, look at all the
observations and then evaluate the mean in the outcome space at K1.  Then
I  move to  K2,  Mu at  K2 would  be  the average,  statistical  average of  all
possibilities at K2 and so on.  So all this quantities Mu X or Mu Y sigma, XY
sigma square X, they are not defined in time, they are defined with respect
to the outcome space, but we are going to walk only in time.  Ergodicity is
this  property  that  we  assume  to  hold  for  the  given  process  such  that
whatever averages that I am going to compute in time will serve a suitable
representatives  of  averages  that  you compute  along  the  outcome space,
okay.  So it is… I am just say… that is you have to state this, you have to say
that this is the framework in which I am going to operate.  You may… now
the question that comes to mind is, is there a way to verify if a given process
is ergodic.  In fact you should have also asked this question earlier, is there a
way to check if the process is stationary?  We will come to that a bit later.  Is
it possible for a given process to say yes this is ergodic, unfortunately it's
very difficult to verify.  In… in a lot of situations you can say whether the
process is ergodic or not, depending on how you are collecting your data.
For example if you have a sensor bias.  There are many examples that are
given for… you know classic example is the most visited park or most visited
theater.  I want to figure out what is the most visited park in a given city.
Ideally I should freeze time and look at all the parks, but maybe I don’t have
access to that, maybe I have, may be with Google images and so on, we
can… with satellite images I  am able to get it,  but let's say I  don’t have
access to such data.  Then what am I suppose to do.  I will follow a few… I
will have a few individuals who are park going, I mean they love going to
parks and I follow basically assuming that they don’t have any bias towards
the particular park, I have randomly selected this individuals and I am going



to note down, which parks they have visited.  Over a period of time, because
now I have to… what I am doing is essentially replacing this outcomes with
time.  And I hope that over a period of time, I have enough data and I look at
the data in time and say yeah, this must be the most visited park, but there
are  two  important  assumptions,  one  the  preferences  of  this  randomly
selected  individuals  do  not  change  with  time.   If  they  change  then  that
means they are non stationary.   So this  ergodicity  property itself  is  valid
when the process is stationary.  You don’t speak of ergodicity or all, when
there is no stationarity.  First of all I will look at things in time, only if I am
assured that the underlying characteristics do not change with time.  If they
begin to change with time, I  cannot rely on a temporarily.   So ergodicity
implicitly  assumes  stationarity.   So  that  is  an  implicit  assumption.   The
second thing is that I hope I have not selected an individual, who doesn’t go
to park at all.  Then that means if I… suppose I have selected 5 individuals
and 4 of them don’t go to park, then I have a wrong representative, wrong
sample, wrong sensing.  The sampling scheme has gone for a toss.  So that
can lead to completely erroneous conclusions.  So as you can see here, most
of cases ergodicity is violated, if you have not sampled in a proper manner, if
your sampling mechanism is at fault, okay.  Of course there are theoretical
conditions and so on, but… and we will not go into that, but what you should
remember  very  well  at  the  back  of  your  mind  is,  when  the  process  is
stationary and when you sit to work with time domain data, which is what we
are going to do in reality, we are making a big assumption of ergodicity.
(Refer Slide Time: 06:25)



So if everything fails, you have tried the best model, everything, then you
may have to come and revisit this assumption, may be this assumption is
violated, okay.  So one can go deeper into ergodicity, some formal criteria
can be given, but we will not get into that, that’s not of interest to us in this
course.  So there are two pillars, two legs on which our models will stand,
one is stationarity, second order stationarity and when that holds, ergodicity.
This is… these are the two legs on which or the two pillars you can say, on
which our models will stand.  It's important to know this, whether we can
verify the assumptions or not always in theory, it  is… people don’t worry
whether  I  can  verify  it  in  practice,  what  is  important  is  to  state  those
assumptions first.  Verification comes later on.  Alright, so any questions on
ergodicity?  It's mostly, it's got to do with the way you are observing the
process,  rather  than  the  process  itself.   Of  course  if  you  include  the
observation mechanism as a part of the process, then you can say it's the
process itself?

(inaudible)

What do you mean by dynamic?



(inaudible) not at steady state and then…

Dynamic process is never going to be at steady state, right, it's values are
going to keep changing with time.

But  how  do  (inaudible)  then  at  least  for  the  verification,  whether  it's
stationary or not?

So  your  concern  is  whether  I  can  verify  stationarity  or  not?   Not  about
ergodicity.  Again it is not easy to verify if a process is strictly stationary, but
it is much-much better than our inability to verify the ergodicity property.  So
suppose I  give  you the  temperature  data,  atmospheric  temperature  data
over a day, you can look at it and say it is not stationary, because you can
see visually that the local means are changing with time, but that is easy
visually.  There may… there are many other processes, whose means do not
change with time, but variability changes with time, the earthquake data for
example is a classic example of that or and… and many others signals as
well.  When it comes to checking for non-stationarities, non-stationarities are
of  many-many kinds.   One has  to  first  postulate  that  this  is  the  kind  of
nonstationarity I am searching for, in the given signal and setup a hypothesis
test and then you see… and go through the standard procedure to come to
the conclusion, whether the null hypothesis is rejected or not.  So there are
different types of non-stationarities as… theoretically there are millions, but
the ones that we are interested in is trend kind of non-stationarity, whether
there  is  a  deterministic  trend,  the  mean is  changing  with  time,  whether
variability  is  changing  with  time,  that  means  the  spread  of  outcomes  is
changing with time?  Then there is something called integrating effect, the
Brownian motion, random walk process, which also falls under the class of
mean changing with time, but not in a deterministic way.  So these are the
three very popular types of non-stationarities that we normally check for.  As
I  said there are other types of  non-stationarities,  but these are the three
most commonly encountered ones.  So when you are… and there are tests…
statistical tests available, given a realization, how do you go about testing
this hypothesis.  So those tests are available, you can do that.

(inaudible)  we get the mean by taking the time stamp… time series,  we
don’t have different realizations…

Correct

So how we can say?

That  is  where  ergodicity  we  assume,  of  course  that’s  where  estimation
theory and inference comes in, what can you say about the… first of… what
can you say about the true mean, which is not a function of time, I mean,
which is not evaluated in time, I should say, based on the averages that you



may compute in time.  And that’s what statistical inference is all about.  But
underneath that is this ergodicity property, that you can make inferences.
How you make inferences is the… is what estimation theory is going to teach
and that we will learn, right.  And the course on hypothesis testing also tells
you how you do that.  But that you are allowed to make inferences is what
ergodicity property tells you, gives you that license, so to speak.  But it’s a
very  valid  questions  and  that’s  a  question  that  comes  to  the  mind  of
everyone, and say well I am going to look at things in time, how am I able to
comment  on what  is  happening in  the outcome space,  right.   But  that’s
where ergodicity property comes and says, okay you are allowed to, but how
you do that, you still have to strike a relation between the estimate that you
compute in time and the true one.  The classic example is sample mean.  If I
take… if  I… let  us  say I  am looking at the mean inferencing problem.  I
compute as usual the mean in time, average in time and that is what we call
a sample mean, from this what can I say about the true mean, which is a
theoretical one.  So suppose I want to say the true mean is 0 and I have an
estimate that  I  have computed in  time.  How do I  conduct  this  kind of  a
hypothesis test that the true mean is 0 versus it isn't, using the statistic V
bar, which would be the sample mean?  What I have with me is this, what I
want to test is this.  That is what is the subject of hypothesis testing and
broadly speaking statistical inference.
(Refer Slide Time: 12:31)



For that you have to understand now the relation between V bar and Mu and
that’s where we get into the estimation theory.  Okay so let me just quickly
talk about auto-covariance and auto-correlation function.  We have already
spoken about it.  You should not think of auto-covariance function as another
concept, in fact all the concepts that we need to understand random signals,
we have already learnt, when we were reviewing random variables.  All we
are doing now is applying those concepts to the signal, that’s all.  So what is
auto-covariance function, it is a covariance between two observations, you
can say of the same random signal.  You can say it's internal covariance,
because you are looking at within the signal it is called auto-covariance to
distinguish it  from cross covariance,  which we will  review as well.   Cross
covariance by a stretch of imagination, you should be able to guess, would
look  at  covariance  between  observations  of  two  different  signals  at  two
different instants, correct.  We are studying all of this, you should not forget
to build a model, don’t forget that fact.  Everything that we learn, you should
in your mind keep asking, how does it lead it's way to the development of a
model.  Why… why do you think we are studying auto-covariance function,
because covariance is a linear measure and this auto-covariance is going to
tell me whether there is linear dependencies within a signal.  If there is, then
I can fit a linear model to make a forecast.  If there is none, then there is no



hope, at least in the linear world, there is no hope.  So this auto-covariance
function  has  many  roles  to  play.   First  it  serves  as  a  measure  of  linear
dependence.  So why does it  serves as a measure of  linear dependence,
because at its heart is covariance.  And we know covariance is a measure of
linear dependence.  So don’t think that auto-covariance is actually a very
alien concept.  Now I have given the definition for a stationary process and I
have already said for a second order stationary process, auto-covariance is
only a function of the lag L.  What is this lag?  It's the distance between the
observations in time and obviously it will keep changing with the lag L.  How
two successive observations influence each other is  going to be different
from how two observations positioned 100 samples apart are, 100 instants
apart are going to influence each other.   So sigma is  going to be only a
function of  L,  not the times at which you are going to look at this  auto-
covariance.   The  other  thing  is  that  this  auto-covariance  is  a  symmetric
function…  symmetric  function  of  what,  function  of  lag  L.   That  means
whether… whether I look at how V4 influences V6 or V4 is influenced by V2,
it's the same.  That means if lag is positive or negative, doesn't matter, the
auto-covariance only  depends on the magnitude of  the lag,  clear.   It’s  a
symmetric function.  Why is it a symmetric function by the way?  Can you
reason it out in your mind?  Why… why shouldn't it be asymmetric?  Because
covariance is  a symmetric  measure and you are applying it  to the same
signal, okay.  We know covariance is symmetric, that alone is not the reason,
but that’s the beginning and you are applying it to the same signal.  That
means, whether I switch the order VK or VK-L it doesn’t matter.  Whereas
cross covariance, it will matter, because I am looking at two different signals,
alright, so the auto-covariance is symmetric function even from that view
point.
(Refer Slide Time: 17:01)



Now  there  are  many  uses  of  auto-covariance  and  we  will  review  those
shortly.  As with covariance, we have issues with auto-covariance, that is it is
not bounded, it is sensitive to the choice of units for the signal and so on,
therefore we work with auto correlation.
(Refer Slide Time: 17:30)



You just  have to  remember  that  auto-covariance is  sigma VV at  lag  L  is
simply covariance between V at K1 and V at K2, that’s all.
(Refer Slide Time: 
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Since  this  is  a  covariance  measure  I  have  issues,  those  two  issues  of
unboundedness and sensitivity to the choice of units, therefore I work with
auto correlation.  And like auto correlation… like correlation, auto correlation
is also a bounded measure and it attains a value of 1 at… at lag 0, what is
the maximum value of correlation unity.  That maximum value by definition
here is achieved at lag 0, because of the way we are normalizing it.  you
have to argue in your mind.  Why we have divided by the auto-covariance,
why we have normalized it with auto-covariance at lag 0.  How did this come
about?
(Refer Slide Time: 18:24)



Why this normalization we have done?  How do we normalize covariance,
what is the definition of correlation?  It's covariance divided by… Now how is
correlation defined between two random variables.  Sorry… no-no go ahead,
how is correlation defined between two random variables?

Sigma XY

Sigma XY by sigma X times sigma Y.  What are X and Y here for us?  V at K1
and V at K2, right.  So if I look at the denominator I am looking at standard
deviation  of  the  or  you  can  say,  square… square  root  of  the  product  of
variances.  So sigma square X would be the variance of the signal at K1,
sigma square Y would be variance of signal at K2, but I have assumed it to
be  stationary,  what  does  that  mean,  they  are  the  same,  right.   And  by
definition  variance  is  nothing  but  auto-covariance  at  lag  0,  right.   So
ultimately here when I take the square root, I would get sigma XY, because
sigma X = sigma Y, I get this, and that’s why you are normalizing with that.
(Refer Slide Time: 19:52)



Now the correlation, I said… as I said, sorry the auto correlation attains a
value of 1 at lag 0, that is obvious by definition.  What does it mean?  It
means that every sample or every… at every observation, sorry… if you look
at  every  observation… any observation,  what  is  it's  best  correlated with,
itself.  What… who is the person who looks most identical to you or perfectly
identical to you, yourself.  The correlation between you and yourself is going
to be 1, similarity.  Correlation is the measure of similarity as well.  Any other
person, the correlation may be anywhere between 0 and 1, although as I say
and as  we hear,  there  are  seven people  who are  suppose to  be  looking
identical for any individual.   So you… I don’t know if  you have found the
remaining  six,  if  it's  Bollywood,  it's  easy  to  find.   Even  there  I  bet  the
correlation won't be 1, okay.  So when you look at this auto correlation being
1 at lag 0, all it is saying is that… you know, the… what is the observation
that is best dependent on, itself.  Fine, the most important property of an
auto-covariance function is… is that it is non-negative definite.  Please do not
think that it  means the values are non-negative definite. Auto-correlation,
like correlation can be negative valued also.  Auto correlation is a sequence
now.  So we have graduated from a single number to a sequence.  This
sequence is  said  to  be  non-negative  definite  and  there  are  two ways  of
defining non-negative definiteness.  One way is this standard definition that



you  see,  any  sequence  is  said  to  be  non-negative  definite,  sorry  I  used
gamma here, please I will change the notation on the top, I should have used
sigma there.  So any sequence sigma is said to be non-negative definite, if it
satisfies this condition, okay.  But it's a difficult definition to use in place.  A
much easier definition to use in practice, to check if a given sequence is non-
negative definite is this condition comes from functional analysis, Bochner's
theorem, which says that any absolutely summable real valued sequence,
sigma, it places some requirements, in fact the top, the earlier… the first
definition  doesn't  place  any  requirement  on  absolute  summability,  the
second  condition  says,  any  sequence  that  is  absolutely  summable,  that
means  it  should  be  absolutely  convergent,  is  said  to  be  non-negative
definite, if it furrier transform exists.  You recognize the right hand side to be
the furrier transform, it’s a discrete time furrier transform.  Now you realize
why absolute summability is being given as a condition, because it has to be
absolutely convergent.  So it turns out that this furrier transform of the auto-
co… I mean if you think of the sigma as auto-covariance function, it turns out
that  5this  furrier  transform  of  the  auto-covariance  function  is  called  the
spectral density function.  So slowly we are getting introduces to spectral
densities.  That omega is there is actually truly frequency.  But if you don’t
care about that, given any sequence, I want to figure out whether it is non-
negative definite.  And if I am given that it is absolutely summable, I can use
the second result, and straight away arrive at the conditions for non-negative
definiteness.
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For us what this means is that not any symmetric sequence qualifies to be
called  as  the  auto-covariance  function.   There  are  many  symmetric
sequences, but not all of them are necessarily non-negative definite.  Only
small… or a subset of symmetric sequences are non-negative definite and
therefore I need a special condition and only those qualify to be called as the
ACVF of some process.  So the question that you should ask yourself is why is
this condition so important, why are… why do people keep highlighting the
non-negative  definiteness  property  of  an  ACVF?   The  reason  is  when  I
estimate ACVF, this is all theoretical discussion, when I estimate, what am I
going  to  do,  I  am  going  to  use  a  formula,  I  am  going  to  be  given  N
observations and I am going to use some formula to estimate ACVF.  Here I
have used a formula to estimate mean, this we call as a estimator.  Likewise,
I will use some other formula to estimate ACVF, then that estimator should
guarantee, that all the estimates that I obtained of ACVF at different lags
workout  to  be  a  non-negative  definite  sequence,  if  they  don’t,  then
unfortunately the model that I will build from the auto-covariances cannot be
guarantee to the representative of the stationary process, you understand.  It
is important that the estimates also satisfy certain important properties of
the theoretical quantities that I am estimating, then only the models that I
build will make sense.  So one of the important requirements for any formula



that you come-up with to estimate, any method that you come-up with for
estimating  ACVF,  you  have  to  guarantee  that  it  results  in  non-negative
definite sequence, then only you can say, you can proceed further and ask,
how good is estimator and so on, when it comes to ACVF.  Likewise when we
talk of spectral densities, by definition spectral densities are non… so look at
this,  it  says  that  first  this  spectral  density  should  exist,  sorry,  I  didn’t
complete the statement here, the spectral density should exist and it should
be non-negative valued at every omega, then only the sequence is said to be
non-negative definite.
(Refer Slide Time: 26:22)

Mere  existence  alone  is  not…  that  any  way  is  guaranteed  by  absolute
summability, but it should be non-negative value.  Here we are talking of
values,  when  it  comes  to  ACVF,  we  are  not  talking  of  non-negativity  of
values, we are just talking of non-negativity of the sequence.  But when we
are looking at spectral density, it's a density function, this gamma of omega
is a density function, density function have to be non-negative value, and
that is what is the requirement.  This has… this particular result that you see
is at the heart, you can say it's fundamental to the entire world theory of
random processes.  You cannot even imagine, you know, in what ways it
applies.  So anyway, I will just conclude the class with white-noise, and we



will continue the discussion.  It’s a very simple one, we have already spoken
about  white-noise processes and you know white-noise is… this  notion of
white-noise  is  extremely  important.   Don’t  worry  about  non-negative
definiteness  so  much,  you  just  have  to  remember  that  any  ACVF  is…
sequence is a non-negative definite when it comes to random… stationary
process.  Okay so the white-noise process is this idealization that serves in
many  different  capacities  in  time  series  modeling.   It  is  this  ideal
unpredictable process, why… why do I need to define this, because when I
am going to build a model, let's say pure time series model, the first thing
that I am going to check is, if the given series is white, if it is, then if it is an
assignment problem, I am happy, I don’t have to build a model, but if I have
been given a job, and I am being paid for it, then I better you know, impress
my boss with a model, then you are disappointed.  So that is just one use,
remember when we build a model, we have said, if you recall in the liquid
level system, when we talked of goodness of a model, what did we say, as to
when the model is good? when the residuals, that whatever, the model could
not predict.  One of the conditions is that the residuals should be white, other
condition is, it should not have any input effects, but the other… so there are
two conditions, one is that the residual should not have any effects of input
left, that is for goodness for G hat and the goodness of H hat is measured by
looking  at  the  whiteness  of  the  residuals.   So  again  there  the  notion  of
whiteness  comes  in.   So  for  many  reasons  the  white  noise  process
conceptualization is extremely important and it is defined as a stationary un-
correlated random process.  It is only specified in terms of the ACF, not even
the variants.  It says the ACF should look like an… is like an impulse, that’s
all.  It doesn’t say, what should be the variance and so on.  It doesn’t say,
what should be the distribution, that is the p.d.f. is also not specified, so I can
have  a  Gaussian  white-noise  process,  I  can  have  a  uniform  white-noise
process and so on, all that it says is, it should be stationary, second order
stationary and un-correlated.  These are the only two requirements.  And any
process that satisfies these two is said to be a white noise process.
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So tomorrow we will complete our discussion, at least of the time domain
characteristics, where we will  look at partial  auto correlation function and
cross correlation functions.  We will of course begin the class tomorrow with
some more discussion on the white-noise process, in what way white-noise
process  is  going to be serving as an extremely important  tool  in  system
identification or in modeling, okay.  Thank you.


