
Very good evening.  In the last class we concluded our review of random
variables.  Where towards the end I spoke about partial correlation.  After
having  discussed  correlation  we  realized  that  there  is  going  to  be
confounding  that  will  haunt  us,  and  that’s  true  of  any  data  analysis.
Whenever you are considering measurements of  a set of  variables,  there
could always be the… the scenario,  where you have left  out  some other
variables in your analysis, and that’s not deliberately, it's simply because
you… perhaps do not have measurements with you.  And since typically that
is the case, you will run into confounding invariably, unless you guarantee
that the variables that you have included in analysis are indeed the set of
variables  that  are  of  relevance  to  whatever,  your  process  that  you  are
looking at.  But many a times we do have variables that we have measured,
but have not taken into account, in let us say correlating to variables and
that’s  when  we  can  run  into  confounding  partial  covariance  or  partial
correlation, essentially allows you to compute the correlation between two
variables after discounting for either one or more confounding variables.  The
example  that  we went through was for  the case of  a single  confounding
variable, but you can extend that idea to multiple confounding variables as
well.  And in some sense you can think of correlation and partial correlation
as  analogies  of  total  derivative  and  partial  derivative.   When  you  are
evaluating partial derivative, you hold all the others constant, right all the
other  variables  constant,  and  then  you  basically  get  to  know  how  one
variable changes with respect to another variable, that variable alone and
that’s obviously of  interest because in a multi  input,  let us say you have
multi input and single output process, right.  Why is this correlation or partial
correlation relevant, how is it relevant system identification, when I have a
multiple input, single output system and I am trying to look at the correla… I
am computing the correlation between the output and let's say one of the
inputs.  What is the danger or what is the risk that I run into, the correlation
between  Y  and  U1  let  us  say  I  am  looking  at  the  first  input,  can  be
confounded by other inputs if the other inputs are similar, they have some
similarity with U1, right.  So numerically therefore the correlation between Y
and U1 is not truly the correlation… is not truly representative of the channel
between U and Y1.  It can contain the effects of the other input as well.  So
you can just see this, you have Y=G11 U1+G12 U2, and you correlate Y with
U1, there will be a second term, which will contain correlation between U1
and U2, unless you have guaranteed in your experiment that there is nothing
numerically similar or statistically similar between U1 and U2, you cannot
assume that the correlation between Y and U1 is only representative of G11.
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On  the  other  hand  if  you  have  done  an  experiment,  where  you  have
designed your inputs in such a way that U1 and U2 are uncorrelated.  It's
possible.  We know that correlation and un-correlatedness in statistics would
mean our orthogonality in functional space.  So you just have to ensure that
U1 and U2 are some… in some sense perpendicular or there is no correlation.
For example you can take a sin and a cosine, something like that, right.  If
you design your experiment carefully, then it becomes easy.  Then you can
straightaway say that the correlation between Y and U1 is indeed reflective
of G11, there is no effect of G12 at all, otherwise, you will have confounding.
Partial correlation between Y and U1, conditioned on U2, because you have
the knowledge of U2, will  make sure that the partial  correlation, which is
between  Y  and  U1  is  only  due  to  G11  and  quite  a  few  methods  in  the
literature do exploit this property that the partial correlation between Y and
U1 conditioned on U2.  Whenever you talk of partial correlation, you have to
mention conditioning variables also.  You have to tell the reader, what are
the confounding variables that you have taken into account.  So here if you
were  to compute the partial  covariance or  correlation  between Y and U1
conditioned on U2, then you would have numerically eliminated the effect of
G12 on Y.  It is in some sense you can say effectively, what you are doing is,
you are breaking this meso system into multiple seesaw systems.  You are



not breaking it physically, you are doing it numerically.  This is what we call
as decoupling numerically, okay.  So we will… we will see the application of
partial correlation today when we review now random processes, where we
will come across a tool called partial auto correlation function.  First we will
get intro… introduced to auto correlation functions, where we will just quickly
review  the  concept  and  it's  properties  and  then  also  talk  about  partial
autocorrelation  functions,  okay.   So it's  time to  now move on to  random
processes.  So we have to graduate now from random variables to random
processes.  And you must recall each time, why we went to the theory of
random variables, because at each instant the random signal is a random
variable.  Now we know already that the random signal is nothing but an
ordered collection of random variables, of course that exists infinitely in time.
Associated with this random signal is  a process called a random process.
There  are  two  ways  of  looking  at  a  random  process.   A  conventional
definition  says  that  the  random  process  is  the  ensemble  of  all  possible
random signals  that  you  can  think  of.   See  at  each  instant  you  have  a
random variable and we know that for a random variable there are many
possible outcomes.  Now when you are tying them together, you get myriad
of possibilities of random signals.  The collection of all such random signals is
called a random process.  So it's like an ensemble.
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A more practical or a pragmatic perspective would be simply to say there is
this random… there is this process that generates all possible realizations.
We can say that one… one version of a random signal is a realization.  So a
process that generates all possible realizations is what we call as a random
process, either way… either way is fine, but all you have to remember is that
random process is essentially the one that is responsible for the generation
of all possible random signals associated with that phenomenon.  And the
other thing that we should remember is that the random process is both the
function of time and realization.  That means it's a two dimensional thing
unlike a deterministic process, which is only a function of time or space or
some other independent domain.  For a deterministic signal there is only one
possibility and associated with that is a deterministic process, which is also
only a function of time.  Whereas with the random process, you have also the
realization  space.   So  many...  in  many  texts  you  would  see  the  random
process is XK or VK, we will now move on to the notation VK, but suppose XK
is the random signal that you are looking at, then the random process, this is
your signal, the process is usually denoted as X of K times K, Omega, but this
Omega should not be confused with frequency, unfortunately Omega is also
a symbol that is used for realization.  So strictly speaking a random process
is a function of both time and realization, normally. We do not talk of the
realization, we suppress that dependency, remembering in mind that a single
random,  course  of  random  signal  that  we  see  is  nothing  but  a  single
realization.  If I were to observe, if I were to think of the random process, it
will  be collection of all  such things.  So the random process is actually a
function of both, but normally we don’t use this notation, we simply use this
notation.  To mean that there is a collection of random signals.  Sometimes
we may even drop the curly braces.  You just have to understand that we are
referring to the process, okay.
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So one of the first things that we have to do, we have to think about in the
analysis of random processes is this concept of stationarity.  And why is this
important.  So what do we mean by analysis, primarily what we mean by
analysis  here  is  modeling,  right.   So  when  I  build  models  for  random
processes, so I am given data, and I am going to build a model from this
single realization and obviously this realization is going to be given to me
over a finite  time, I  cannot have an infinitely long realization,  some 100,
1000, 10000 whatever, it is, the number of observations is finite.  The model
that  I  build  from this  finite  observations  should  hold  good  for  the  entire
random process, that is requirement number one, right over that period of
time and requirement number two, it should be valid at all times, otherwise,
what  is  the  point.   As  a  simple  example,  suppose  I  give  you  record
temperature, atmospheric temperature, in the morning, let's say between 6
and 8 o'clock, and I say okay build a model that will forecast the temperature
at other times in the day, do you think this is a well post problem, or is there
an issue with this statement, is there some issue, there is no issue, you can
do it, what is the issue?

(inaudible)



Okay so therefore…

(inaudible)

Different and therefore… it  will  always be different, you have to be more
clear,  now  you  have  to  be  more  technical  in  what…  what  you  are…  I
understand what you are trying to say.

(inaudible)

Sorry, correct, so there you will see the local levels average as being shifting,
that itself is enough to put us off.  Say whatever model I build between 6 to
8, may be valid for the next day perhaps, but not for the same day, right.  So
these… processes like these are said to be non-stationary.  Their statistical
properties are not invariant with time, this is one thing that slowly you should
get used to, in deterministic world we spoke of liner time invariant processes.
How did we define time invariance in  the deterministic  world,  we said it
doesn’t matter when I look at the process, whatever, input I gave yesterday,
if I give the same input today, or at any other time, it should evoke the same
response.  So we are looking at the response.  Why are we paying attention
to the response because for a deterministic signal, the value of the response
has everything in it, it complete, yeah it's… I can place complete faith in it.
Whereas for a random process, the value is not the one, even if the process
is so called stationary, the value will be different, because after all you will
get another realization.  So what is it  that I  expect of invariance when it
comes  to  stochastic  processes.   Basically  I  expect  that  the  statistical
properties, which are deterministic around, which are determined, the center
of outcomes, the spread of outcomes or any other statistical property, like
correlation  and  so  on… they  should  not  change  with  time.   So  there  is
something fixed about a random process that we expect.  But we cannot
expect the value of the observations to be the same, because we know even
if I were to freeze time, if I observe with many sensors, I will get different
values, therefore I cannot define or I cannot expect the process to remain
same in the realization world, in the value, in the observation world, but I
should expect it to be invariant, I can expect it to be invariant in some other
domain or in… in some other aspects and those aspects are the statistical
properties.  Now if you stretch this imagination, we know mean is the first
moment, now remember by the way, when you are dealing with a random
signal, we are dealing with collection of random variables, and whenever we
deal  with  a  collection  of  random variables,  we are  looking at  joint  p.d.f.,
correct.   So when we talk of variants or when we… when we talk of this
collection of random variables, we are talking of joint… moments of this joint
p.d.f.  Strictly speaking we want all the moments of this joint p.d.f. to remain
invariant to time, that is the ideal expectation, like an ideal gas.  We know
it's going to be extremely difficult for any process to fulfill that requirement,
but it's good to start with that idealization, so that we know how much the



deviations,  we are  willing  to  withstand from this  idealization.   So  strictly
stationary  process  is  one  whose  joint  p.d.f.…  no  directly  we  state  this
requirement in terms of the joint p.d.f., we say… notice that now we have
changed notation from X to V, okay slowly we are getting into the society
notation.  So V1 to VN are the N observations that I have.  What we require
for  strict  stationarity  is  that  the joint  p.d.f.  of  this  N observations  should
remain the same at over… at whatever, time I observe.  So if I  shift  this
entire observation by a certain time T or you know certain time instant…
number  of  time instants  T,  the joint  p.d.f.  should  remain invariant  for  all
times and for all sample sizes.  That means if I look at the joint p.d.f. of three
observations and joint p.d.f. of three observations may be in the night, they
should remain invariant, or tomorrow or any time.
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Likewise I  look at joint p.d.f.  of 100 observations, now, later or any other
time, they should remain invariant, which boils down to saying, if I shrink the
number of observations to one, at each instant the p.d.f. should remain the
same, because it should be… it should be satisfying for all N and for all T.
Every observation should fall out of the same p.d.f.  It's like, suppose I tike a
dice that I am rolling, that we use for ludo and other games, what happens, I
am looking for some face value 1 2 3 4 5 6, there is a certain probability



associated with the roll of a dice and the surface on which I am rolling, let's
say the surface is very good, very smooth, no issues, so we assume uniform
probability, that is all values are equally likely 1/6, but is that going to be the
same.  If I am looking at a random process, where I am only observing, at
each instant what is the face value, now I am going to construct a random
signal out of it and I am looking at associated random process, is it going to
be strictly stationary?  Yes or no, if yes why and when?

(inaudible)

Correct, but after considerable time, right, it depends on the dice.  If it is… if
it is very well manufactured, then I can assume it to be strictly stationary for
a very long time.  But if it is a fake one, right, then probably I cannot assume
it to be strictly stationary.  Now this is an idealization.  When we say that at
all times and at all observations it is impossible for any process to full fill this,
but over considerably large time scales, compared to the observation scale
that I have.  So if I  am performing the experiment, let us say over a few
hours and the dice take years to deform, then for all practical purposes I can
assume it to be strictly stationary.  But if I  buy it today and in a week it
deforms, then I cannot assume the resulting random process to be strictly
stationary.  In general it is hard to meet this requirement, but we will start
with this requirement.  And by default any process that does not satisfy this
condition  is  said  to  be  non-stationary.   So  as  you  can  see  the  strict
stationarity condition is on the joint p.d.f.
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But we very well know even from the theory of random variables, I  don’t
have to worry about the p.d.f. all the time, I can work with the moments,
right.  We said that, in linear world… in the linear world I don’t have to worry
about the p.d.f. all the time, it suffices to worry about the mean and variants
and covariance, when I am looking at two variables, it's covariant.  How do
we prove that, suppose I have a variable Y, that I  am predicting, random
variable Y.  Let's say I am predicting it using some random variable X.  What
is the statement that we made, when we were reviewing random variables,
we said for linear… in the linear world, I only have to worry about the first
and second order moments, right.  I don’t have to worry about p.d.f.s.  So let
us say, now this the model that I want, this is a prediction or predictor that I
want to build for two random variables X and Y and I want to predict Y using
X and let us say I am going to minimize, I am going to find Y… sorry A and B
in such a way that this is going to be minimized.  Here we don’t have any
observations, I am just saying there are two random variables, I am going to
predict  one using the other.   Obviously  I  know there  will  be  some error,
because it’s a random variable.  Now I want to fit a linear model, although I
have written a linear predictor, for now assume that’s a linear model that I
am fitting, I want to find A and B in such a week that I get this minimum
mean square error, it is a standard criteria.  What are the optimal values of A



and B?  Can you give me the answer?  In terms of the statistical properties of
Y X.  You should get used to this slowly now, you already have questions
similar to this.  You should be extremely comfortable with computing the so
called theoretical or optimal estimates.  So just proceed stepwise, you should
get the answer.  So what I want is A star and B star as optimal estimates of…
If for simplicity assume, X is 0 mean, so… it's up to you, doesn’t matter.
Anyone with the answer.  Please make sure that you know how to solve this
problem.   This  is  the  most  basic  problem  that  is  solved  in  system
identification.  Where you have only two random variables, we are not even
looking at signals and we are fitting a linear model, very simple, that’s what
you meant.  Okay so your issue is, you don’t know to expand this subjective
function.   What  is  there  in  expanding,  it's  a  quadratic.   So  you  have
expanded, that’s  not a issue.  Expectation of  Y-A+BX to the whole A+BX
there is whole square here, so how many terms do we have?  And if you were
to  look at  it,  you would  have three squares  and then three cross  terms,
correct.   So let's write that, I  mean, if I  don’t know how to do things, let
become  a  baby  and  do  the…  take  the  baby  steps.   So  I  have  here
expectation of Y square + A square or you can keep it this way, you can say
A+BX to the whole square – 2Y times A+BX, fine, that’s it and therefore I
have here  expectation  of  Y  square  + expectation  of  A+BX to  the  whole
square, which is A square + B square X square + 2AB X – 2 times expectation
of Y time A+BX, fine, is it clear?  Now I just have to differentiate this with
respect  to… partially  with respect to A and B,  that’s  also now when you
differentiate with respect to A, this term doesn’t prevail.  This term vanishes,
then this term also vanishes and therefore if you look at the equation that
you get for solving A star, you get 2A, because expectation of A square is A
square plus what do you get, 2A times B times expectation of… and then
what else minus what do you get 2 times expectation of Y and this we set to
0, am I right?  Is that correct?  What happened, that’s fine.  Therefore, is
there a problem with this, no there should, no A here, I am sorry, yeah it's
2B, correct.  Therefore A star, if… simply if you take it to the right you get Mu
Y minus well this B is the one that’s at optimality, so we say it's… this also
has to satisfy, both have to be satisfied, so this B is the solution to the other
equation and that’s what you have here, this Mu X, and likewise you setup
for B star.
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Anybody  has  any  difficulty?   What  was  the  difficulty  in  arriving  at  this?
Typically I think there is some fear in the mind, that oh I will not be able to
solve this, nothing like that.  You just follow things procedurally, you will be
able to crack it.  When you are in doubt, follow the steps.  If necessary take
baby  stems,  doesn't  matter.   Is  everyone,  I  am asking  this  repeated,  is
everyone  comfortable  at  arriving  at  the  answer… with  arriving  at  the….
Because  it's  extremely  important  that  you  are  comfortable  with  taking
expectations, this is what you will be solving in your assignments and may
be your quiz and part of your final exam and so on.  You should be really
comfortable with deriving this theoretically optimal models.  Clear, can I go…
go ahead further, or anybody has any question?  Fine, so I assume that all of
you are comfortable.  Now what we observe is that this optimal estimates of
A and B are only dependent on the first and second order moments.  Does
the  p.d.f.  come  out,  you  can  say  yeah,  this  first  order  moments  are
dependent on the p.d.f., that’s fine, but explicitly does the p.d.f. make its way
through.   I  only  need  to  know  the  first  and  second  order  moments  to
estimate the linear model.  Now although we have done this for the bivariate
case, that is for two random variables, in general even if we were to extend it
to the multi variate case, suppose, suppose I had X1 X2, multiple random…
multiple regressors, even then… then the conclusion would be the same, you



only need to know the covariance, it's up to the covariance, you need to
know.  Which straight away goes to show that as far as linear models are
concerned, I do not need to have a knowledge of the p.d.f.  I just need to
estimate the covariances and the means, correct.  Now the other thing that
you should remember here is, this is a very generic problem.  Y and X are
some, two random variables, they could mean different things in different
situation.  So if I am looking at, let us say building a model for a random
signal, single signal, Y could be an observation at the Kth instant and X could
be an observation in the past,  you understand?  Because at each… each
observation of a random signal is a random variable, so what Y and X did
stand for varies with the application.   Since we are interested in random
signals, we can think of Y as some… of the random signal, the Kth instant or
you can say K+1, doesn’t matter.  I am predicting using the past… predicting
the Kth… at the Kth instant using may be K-1 K-2 and so on.  In which case
the sigma XY that you see in the numerator, which we call as a covariance,
then becomes what is known as the auto-covariance, because you are now
evaluating the covariance between… because we said X is some signal… the
signal in the past, at some K-1 or K-2 whatever, instant and Y is the signal at
the Kth instant.  So you are looking at the covariance between the… between
two observations of the same signal at different instants.  So you are looking
at  what  is  known  as  internal  correlation,  which  is  also  known  as  auto-
correlation.  There are many names to this, the more prominent name is the
auto-covariance or associated with that is auto-correlation.  Now we will get
into that.  So we will say here, that as far as linear models are concerned, it
is… it suffices that the first and the second order moments remain invariant
with that.  And what we are essentially doing is relaxing the condition.  We
said oh p.d.f. doesn’t have to be change… I mean it can change with time, so
long as it changes in such a way that first and second order moments does
not change with that.  The other moments are most welcome to change, I am
not worried about it, why, because I am going to build linear models, alright.
So this weak stationarity says, the mean of the process remains invariant
with time, the variant should be finite.  Why should the variant be finite?
Why we are requiring this?  Look at the screen, look at the board, you will get
the answer.  If I treat X and Y as two observations at different instants of a
random signal and I am fitting a model for the evaluation for predicting the
signal, clearly it says that B star will depend on the variants of the signal,
sigma square X would be the variants of the signal at some instant, that
should better not be infinite, right.  So it should have finite variants.  And the
numerator here.
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See what I am requiring is that this model that I built, based on hysterical
data should hold good for future.  What does it mean, A should not change
with time, B should not change with time or A star and B star should remain
invariant with time.  When will A star and B star remain invariant with time?
When the means are constants, when the variants is finite and when this
numerator here is invariant with time.  What is that numerator when I think
of a random signal, it is the auto-covariance, it’s a covariance between two
observations, any observations at K1 and K2 instant, that should not depend
on time.  What should it depend on, it should only depend on the distance
between the  sampling  instants.   So  if  I  think  of  X  as  V  at  K1  and  Y  as
observation of the signal at K2, this sigma XY we call it, say auto-covariance
as you see on the screen.
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It should only depend on K2-K1, not on K1 and K2 separately.  What does it
mean?
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It means that it should… the covariant should be such that, whether I look at
the covariance between K1 and K2 or K1+T and K2+T, it should not be… it
should  remain  the  same.   Otherwise,  what  does  it  mean,  the  internal
structure is changing with time, all… that means the way for example V4
influences V6, if that is going to be different from the way V6 is going to
influence V8,  and there is  something,  then that  means  my B star  is  not
constant.  On the other hand the way V4 influences V6 can be different from
the  way  V6  influences  V7,  but  that’s  because  you  are  looking  at  two
successive observations, versus two observations, two instants apart.  But
what this third condition means is, doesn’t matter where I am positioned in
time, as long as I pick two observations that are separated in time by the
same interval, their dependency should remain invariable, right.  And that
makes perfect sense, because you want… then only this model will remain
invariant with time, you understand.  Any questions?  So that is the most
important thing and we will of course dwell quite a bit on auto-covariance.
This actually is opening doors to the auto covariance function.  This we call
as weak, stationarity, or wide-sense stationarity, or second order stationarity.
There are so many different names associated with this.  And we will assume
hence forth that the process is second order stationary, when we say process
is stationary, typically we will imply this kind of stationarity.  There is another



form of stationarity as I keep saying called Quasi stationarity, which we will
not worry about now, we will talk about it couple of lectures later.
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