
Arun K. Tangirala: Okay, so this covariance is a measure that you have to be 
extremely comfortable with. You cannot say, I do not know how to compute 
covariances, how to interpret covariances, what is the definition, nothing, no 
such excuses are allowed, when it comes to modeling. It is that ubiquitous 
quantity that will be with you all the time, and therefore, you should be 
extremely comfortable with covariances, computing covariances, interpreting
them and so on.



Now when you have a vector of random variables, we have not yet proved by
the way that covariance is a linear measure and we may not prove, but I’ll 
give you some results. You should remember covariance as a probabilistic 
measure and also prediction interpretation. Probabilistic perspective is that it
is a second central moment of the joint p.d.f. That doesn’t fetch you much. 
What the interpretation that fetches you a lot is that it is a measure of linear 
dependence. That is more useful to us than prediction theory, but you should
now slowly understand probabilities and predictions are related.

Okay, so coming back to the vector case. In the vector case, again, you talk 
of the covariance matrix, the same story, the off diagonals contain the cross-
covariances of the pairs of variables in combination, and the diagonals 
contain variances along the individual variables. Now the other thing at this 
point I want to broaden your view of random variables. Until now we have 
been speaking of random variables in the context of random signals. Am I 
right? That is how we got introduced to random variables, but now you have 
to graduate from that entry point.

Now you have to learn to look at all other situations or at least a few other 
situation where you would encounter random variables, which are not 
appearing in the context of random signals. So what is one such situation? 
One such situation arises very commonly in parameter estimation, which we 
are going to do extensively in this course, right. We do keep estimating 
parameters of a model.



So what is the connection between this covariance and parameter 
estimation? Of course, the connections are quite deep, but one point that I 
want to really mention here is these random variables that you see here will 
take a different interpretation in parameter estimation where the parameter 
estimates now should be interpreted as random variables. After all, how is 
the estimate being derived from data and data has a DNA of randomness in 
it. Therefore, parameter will also has a DNA of randomness in it, right. So 
every estimate, every parameter estimate is a random variable, because it’s 
a function of random variable. Any function of a random variable is a random
variable. There’s no doubt about it.

So parameter estimates are also random variables and in estimation theory, 
we will run into covariance of parameter estimates. So the x1 that you see 
there, any xi can be thought of as parameter estimate, estimate of some θi, 
some parameter, right. In which case, a covariance matrix is now the 
covariance of parameter estimation with diagonals containing variances of 
the individual parameters, if I have p parameter, I have p elements in the 
diagonal, and of course, the σθ is p/p. so here I have σθθ1, θθ2, and I have σθθ1, 
θθp, and it’s a symmetric matrix. So covariance matrix is a symmetric matrix, 
it’s a symmetric positive definite matrix, which means its eigen values are 
greater than 0 and those are some very useful properties of the variance, 
covariance matrix. We don’t say variance, covariance matrix, we simply say 
covariance matrix. You have to understand.

The more important rather than just remembering the definition, you should 
remember the interpretation. Here the interpretation is the same, that is the 
diagonals contain the variances of the respective parameter estimates, and 
the off diagonals contain the covariances of the parameter estimates. Both 
you have to understand carefully, and for that, you have to have a sound 
interpretation of what is variance. Variance of a random variable is a spread 
of the outcomes, spread of possibilities for that random variable. Likewise 
σ2θθ i, if I pick i parameter, what is σ2θθ i. Do not say σ2θi, that is wrong, because 
for us at least in the classical framework, θi, the true parameters are 
deterministic quantity. It’s the estimate that is the random variable.

So what is σ2θ I had? It is the variance or the spread of possible values of θi, 
and you have to ask in your mind, why should I have multiple possibilities for
θθ i. Why do you think that I should have -- that there are multiple possibilities 
for θθ i? Correct, because there are multiple possibilities for data. I am only 
working with on realization. Had I used another sensor or if I repeat 
experiment or someone was doing an experiment in parallel, another data 
record could have been generated another possible value of θθ i could have 
been obtained. So this thought experiment you should get used to until you 
are comfortable with variance of the random variable, okay. So there are 
multiple records possible, therefore, multiple θθ i are possible, and what does 
σ2θθ i is telling me is what is the spread of all such possibilities.



Now if the estimation algorithm is good, then it should be able to shrink the 
variability in the data. By the time it gives you θθ i, it should have actually 
shrunk the variability into -- it can’t shrink it to 0, because you have finite 
data, but it should have definitely done a very good job of it, and the more -- 
the estimator is better at shrinking it, the more efficient phase is estimated. 
That is the notion of efficiency and estimation theory. The most efficient 
estimator is the one that gives you the minimum variability in θ, okay.

So, so much about the variance of the -- that is the along the diagonals. 
When you look at the off diagonals, what is it telling you? It is telling you how
the estimate of θi is influencing estimate of θj. In what ways it influences -- 
linearly influencing, because it’s a covariance measure. See, when I am 
estimating more than one parameter, one estimate can have an impact on 
the other one. That means the error in one can affect the error in other. Of 
course, there are some very, very specific situations where they don’t affect 
each other, in which case σθθ i, the σθθ is going to be diagonal, okay, but by 
and large your σθθ is going to be not a diagonal matrix. So the off diagonals 
tell you how the error in one estimate is influencing the error in other 
estimate.

Now having discussed so many -- typically when it comes to using this σθθ, at 
least for so-called construction of confidence intervals and so on, we 
generally ignore the off diagonal terms, okay, but that we’ll talk about later 
on. You should note this interpretation very well in your mind.



We’ve talked about the properties of the covariance matrix. So the point to 
take home for you is this covariance matrix is ubiquitous, it has a structure, 
the same structure across all situation. In all situations, ∑x is going to be the 
same, but it’s interpretation changes with what the random variables stand 
for. In random -- when they are simply variables, it has a different 
interpretation; if they are parameter estimates, then they have a different 
interpretation and so on, okay.

And there are many other useful properties of covariance matrix that is used 
in multivariate data analysis. I am not going to talk about it, but the 
important thing to remember when it comes to covariance is, it is only a 
measure of linear relationships. You should remember that, which means if 
the covariance between a pair of random variables is 0, it only rules out 
linear dependency, it doesn’t rule out any other form of dependency. That 
means it says x and y are not blood relatives or first cousins, that’s all. They 
maybe second cousin, third cousin, some hundred cousin, don’t know, all 
right.

So when it comes to using covariance in practice, there are two 
shortcomings. One is that covariance, as you must recall from the definition, 
is sensitive to the choice of units for x and y, and two, it’s an unbounded 
measure. That means that covariance can take on from -∞ to ∞. So the utility
of such a measure is not so great, always bounded measures are easier to 
use and work with, and also we need a measure that is invariant of the 
choice of units of x and y.



If x and y are temperature and pressure. Changing the unit should not 
change the value, because it’s a measure of linear dependence; therefore, 
we introduce correlation, which is normalized covariance, and this correlation
is bounded in magnitude by 1, which means the maximum value correlation 
can take on is unity in magnitude, it can have [Indiscernible 00:10:37].

That’s beautiful, so it addresses two issues in one shot. You can see from the 
definition that it is invariant to the choice of units of x and y, and two, 
[Indiscernible 00:10:49] with what proof of I am going you. You can look at 
the proof anywhere in the literature. It’s standard proof that’s available that 
correlation is bounded. So what is the interpretation for correlation that is 
extremely important. You know the definition of correlation, but what is the 
interpretation. When correlation is 0, then x and y have no linear 
relationship, interpretation number one.

That means non-linear relationships cannot be ruled out. It cannot be -- we 
do not know, it cannot detect necessarily. When correlation hits the 
maximum, that is 1, then x and y are perfectly related in a linear relationship
including an affine form, that is αx + β also, αx + β is not truly a linear 
relationship, but it’s okay, in functional analysis αx + β is called a linear also,
I mean in polynomial function analysis. But anyway, remember that y is a 
linear function of x with the admissibility of an intercept. Perfect.

And when you -- the third is the most practical case that correlation takes on 
values less than 1? Typically when you estimate correlation, you may see 
values of 0.8, 0.5, 0.6 or some value less than 1, it will never be equal to 1. 



So what is the interpretation there? Well, when correlation is less than 1 in 
magnitude, then there are at least two different possibilities, and it’s not 
exclusive. It could be a combination of these two. One that x and y are non-
linearly related. That’s one possibility, which can lower the correlation. That 
means you have a situation where y = αx(ε). It could be some function of x 
or some other variable, but it’s definitely not a linear function of x, right.

It’s definitely not that and this epsilon could contain non-linearities, non-
linear functions of x of pure noise, okay. It could be pure noise also. That 
means the true relation between y and x is linear, but epsilon could stand for
measurement noise or it could be combination of both, okay. So that is a 
situation that you encounter in practice. And normally, again, you would 
conduct hypothesis test, typical hypothesis test that are connected in the 
context of correlation, that the true correlation is 0 against the alternative 
that it isn’t. This is the standard -- I mean hypothesis tests are standard in 
statistical inferencing. Any parameter that you estimate, you would have a 
hypothesis test of this form, that the true value of parameter 0 against the 
alternative that it isn’t. Hypothesis tests of these forms are called 
significance tests, [Indiscernible 00:13:58] estimate is significant or not. So 
remember that. You can look up the videos that I have on introduction to 
statistical hypothesis testing.

So the bottom-line here, coming back to the discussion, is when correlation is
less than 1 in magnitude or if it is extremely low, let us say, 0.1 or 0.05 and 
so on, it could be that there’s heavy amount of noise or it could be that there
is non-linearity, and it’s hard to figure out what is happening. The only thing 
that is for sure is when correlation values are extremely high, then a linear 
model will do a very good job of prediction. That is guaranteed, all right.



So let’s conclude the discussion here. There is this notion of 
uncorrelatedness and there’s this notion of independence. When two 
variables are uncorrelated, it only means that there’s no linear relationship 
between them that is from a prediction viewpoint. The probabilistic viewpoint
is expectation of the product of a product of expectations, whereas when it 
comes to independence, the f -- so look at this nice similarity in the form of 
result. This is uncorrelatedness condition and this is independent condition. 
Of course, we are not looking at f(x, y). Nevertheless, there’s some similarity,
in fact, I should note marginals.

And what this slide is telling you is that uncorrelatedness does not 
necessarily imply independence. Just because moments can factorizable, the
p.d.f.s cannot be factorizable. On the other hand, if the p.d.f.s are 
factorizable, then the moments are factorizable, joint moments are 
factorizable. So that means independence naturally rules out all forms of 
relations including linear ones, whereas uncorrelatedness only rules out 
linear this thing.



So just to conclude, correlation is -- you know correlation is a very ubiquitous 
measure that’s used in data analysis. It has its own limitations, despite its 
mighty use, it has its limitations. One, it doesn’t tell you which causes the 
other. It doesn’t tell you whether x causes y or y causes x, because it’s a 
symmetric measure, that’s point number one. Secondly, it has no physics 
involved in it. I can take any two variables and who that there’s very high 
correlation. It doesn’t tell you anything about physics. You have to choose, 
therefore, x and y carefully in a manner that is significant. And thirdly, 
absence or correlation only implies, again, I keep repeating, absence of 
correlation only implies no linear model can be built. You can possibly build a 
non-linear model and do the job, okay.



So the other point that we will discuss, in the interest of time I am going to 
stop, but I just want to leave you with this thought, this is important as well. 
When I have correlation between x and y, it could be confounded by a third 
variable. So which means, I can have a non-zero value of correlation between
x and y, because there is a common variable influencing them. Truly x and y 
may not be related directly, that is what we call as confounding, and the way
we resolve confounding is what is known as conditioning, that is instead of 
evaluating plain correlation between x and y, you say now that z is given and
possibly influencing both x and y, are x and y correlated. This is called 
condition correlation or partial correlation, and I’ll just give you the 
expression straight away, we’ll not go into the proof of derivations and so on.



The way you construct conditional correlation is you remove the effects of z 
from both x and y, and then you compute the correlation between the 
residual. So if you look at epsilon x.y, you have -X* XX*(Z). What is XX*(Z)? 
Optimal prediction of X using Z. Therefore, epsilon contains all the effects -- 
that is that part of X which is devoid of the influence of Z. Likewise, εY 
contains that component of Y that is influenced by Z.

Now I am going to look at correlation between or covariance, if it is partial 
covariance, between εx.z and εy.z. That is idea, and you can derive the -- 
with this definition of partial covariance, you can derive the expression for 
partial correlation here as σxy.z/σεx.z and σεy.z, and this is expression that 
you can derive. It’s not difficult at all. The only thing that you have to do is 
replace XX* with a linear of Z and Ŷ* with a linear function of Z, and you can 
show the proof. You can refer to my videos on time series analysis, the result 
is derived.



I’ll just conclude with an example on this. So here I have X and Y, 2Z + 3W 
and Z + V. Now obviously, by the statement of the problem, V, W and Z are 
all uncorrelated, which means the only reason why X and Y should be 
correlated in this example is through Z. If I take out the effects of Z, X and Y 
should be uncorrelated. So when I compute the unconditional covariance, it 
turns out to be some 2σ2z, which means it’s a non-zero quantity. But if I 
discount for the effects of Z, and to do that, in practice, I have to be given a 
measurement of Z, remember that. That means I have to be given the 
measurement of the confounding variable. When I do that, then I get the 
conditional correlation to be 0, straight away telling me that Z was the 
confounding variable.

Still if this conditional correlation turns out to be non-zero, it only means that 
still they may be confounded by other variables, we don’t know, but 
definitely what it says is even after you remove effects of Z, X and Y are 
related.

So that brings up to an important point that will end this thing. Whenever 
two variables are correlated, you can never ever resolve in life whether there
is confounding or not, unless you have taken into account all the 
confounding variables in the universe, okay. So that is one way of looking at 
limitations of statistics, where you may not have science necessarily 
involved, but if you have made sure through the knowledge or the physics of 
the process that all the confounding variables have been taken into account, 
then you can trust that correlation to be a measure of direct dependence, 
okay.



When we next meet, we’ll move into the random signal world, where we’ll 
apply all of these concepts to the random signal. We’ll look at auto 
correlation, cross-correlation, models for random signals and spectral 
densities, okay. Thank you.


