
Arun K. Tangirala: So the first moment of the PDF denoted by expectation. 
There’s a reason why it’s called expectation, but let’s understand now what 
is this first moment, which is the mean, and this mean is a statistical center. 
Look at the integral carefully. You can look at it as a moment, fine, ∫ xf(x) dx, 
but I would also like you to view I in a different way. Think of this integral 
approximately as a summation, right. So you have ∫ xf(x) dx, approximately 



it is, I mean if I were to discretize the outcomes, this is what it’s going to be, 
right. I’d just quantize the outcomes. What you see now here, it is in some 
sense an average of the outcomes, but it is not a simple average, it’s a 
weighted average.

What are the weights? No, the xi themselves are the values. Probability, so 
we are seeking average of outcomes, outcomes are xi, these are the weights,
right, f(xi) Δxi is a weight. What is the interpretation of that? It’s already 
written on the board there. It’s a probability that x will take on a value within 
the vicinity of xi. It’s a crude approximation but it’s  not a bad approximation.

So this is the probability that x will take on values within the vicinity of xi. 
Therefore, what you are doing is by computing mean, you’re actually seeking
an average of the outcomes, but a weighted average, so that the ones that 
have higher probability have a bigger say, obviously, which means for 
Gaussian, which is symmetric and so on, you should expect the mean to be 
here. In fact, it does turn out to be that, because it’s symmetric. Why did I 
write the mean there? In fact, the point where I’ve written μ is also the 
geometric center. Because it is symmetric with respect to that point, the 
geometric center and the statistical center coincide for the Gaussian, but for 
chi2, you’ve seen the chi2 distribution, it’s an asymmetric distribution if you 
look at chi2. Look at here.

This is an asymmetric distribution, in fact, you should notice chi2 distribution
is only defined for non-negative value of random variables. In this case, the 
geometric center is somewhere in the middle here, all right, but the 



statistical center, roughly, where would it be, to the left, right. So they don’t 
coincide. So there’s a big difference between geometric center and statistical
center, μ is the statistical center. You can say, it’s a center in the probabilistic
sense. If you don’t like the word statistics, you can say it’s a center in a 
probabilistic sense not in a geometrical sense.

Why is this piece of information important? Because we say it’s expected 
value, it is expectation that I have for this random variable. What is this 
expectation? This is where the prediction perspective is extremely helpful. 
Many a times you don’t see this kind of explanation in basic statistic 
textbook, but the fact is that if I were to seek the best prediction of this 
random variable, let’s say the temperature in the new city. And in what sense
am I seeking best? Best in a minimum mean square error sense.

So there are many possibilities for the temperature, so let’s say, these are all
the possibilities here. There are many possibilities for the temperature, or if 
you don’t, obviously this is unidimensional, so maybe it’s not a good idea to 
draw a region like this. Let’s draw the line. So there are many possibilities for
the temperature. I don’t know which one the temp will occur on the day I 
land in the city, but I still want a prediction.

So let’s say, prediction is somewhere here. I don’t know, I mean my 
prediction could be here or it could be here and so on, but I want it in such a 
way that it is at a minimum distance from the outcomes, but minimum in 
what sense, in a probabilistic sense. The moment you have expectation of 
anything, you go back to the definition, we are saying expectation of x is the 
probabilistic average. It’s not your regular average.



So expectation of x - xx, xx is a prediction to the who square is the mean 
squared error, but this mean is in the probabilistic sense. It’s not your regular
-- it’s not your simple suppose xx xi are all the outcomes, your expectation is 
not simply (xi - xx)2, this is not your expected thing. There is an additional 
factor there, which is that it is a weighted average, right. What is expectation
of (x - xx)2 roughly? Again, this is an approximation. Strictly speaking, it 
should be ∫ (x - xx)2 f(x) dx, this is the correct expression, because 
expectation of any function of x, we’ll go back to that.



Expectation of any function of x is simply g(x) f(x) dx. Notice that very 
carefully. Many people think that is g(x) times f(g(x)) dx. That f(x) dx is a 
probability that x will take on some value within that, g is the deterministic 
function. So unless x occurs, you will not be able to calculate g. So the 
moment x occurs, the transformation is deterministic, which is d(x), x occurs 
with a probability f(x) dx roughly within that vicinity. Therefore, the rating 
that you give always is f(x) dx. It’s not f(g(x)) dx. There is nothing -- once has
occurred g(x) is going to happen for sure, because you’re going to transform 
it. So there is nothing uncertain about that. Therefore, the weightage always 
have to be given to the occurrence of x not the occurrence of g(x).

So what we are essentially asking here is for a prediction that is best in the 
minimum mean square error sense, also known as the MMSE. It’s a very 
standard acronym that you should get used to, minimum mean square error. 
Square error because you are looking at squared distance between x and xx, 
mean because you will compute an expectation, minimum because you are 
seeking an optimal value. And when you solve this problem, simply you’ll get
the solution as expected value of x. Just remember that expectation operator
is a linear operation, so you’ll have three terms in the quadratic, right, and 
only two terms will depend on xx and you differentiate and set it to 0, you’ll 
get the optimal xx as being expectation of x, which is nothing but mu. And 
that is why it is called expectation, because you expect that. It is not that it 
will happen that day, but in the absence of any other information, what is 
this any other information, I’ve not looked at any correlations, I’ve not looked
at what has been the temperature yesterday, I don’t know what the 
temperature was the day before I land and so on. I am going to land maybe 



three months of four months later. So I am just looking at -- it has a random 
variable but has a random signal yet. The moment I look at it, the 
temperature, as a random signal, I will probably bring in correlations also, 
the time correlations, but at the moment, we are not looking at it that way, 
we are just treating it as a random variable.

So I am only looking at the prediction in that sense and that best prediction 
happens to be the mean. That is why we tend to work with averages. Now 
the big, like in the biggest font size possible caution, I want to give you is 
typically the moment you hear the word average, you tend to think of 
averaging in time, which is absolutely wrong. Does time figure out in any of 
this definitions, time has not occurred anywhere, appeared anywhere, right. 
We have said already when we talk of random variables, we should let go the
notion of time. So you should never ever think by default that average is 
averaging in time. These are theoretical definitions, these are defined in 
outcomes space, not in the time space. The moment you see expectation, 
you should think of the outcome space.

So random variable or a random signal always has this additional dimension 
called outcome, which should not be confused with these other dimension or 
time. So we have frozen time here, standing somewhere where, and we are 
analyzing in this direction. So we are asking what is the average in the 
outcome space and what kind of averages we are computing, probabilistic 
averages, remember that. So any time you see expectation, it is actually an 
averaging in the outcome space not in the time at all, never, okay. So that is 
something to remember.

So we’ve already talked about the properties of expectation. Now general 
thing to remember is expectation of anything is average. What kind of 
average? Probabilistic average.



So the next -- I mean just to reinforce this fact that expectation works across 
outcomes and not across time, I have a very simply example here, sine(ωk +
φ). Now I am saying that any instant k, this signal, although I am writing it as 
a function of time, at any instant k is a random variable. Again, I have to find 
out what is the source of randomness here. Sin is not a random function, it’s 
not going to generate a random value, it’s going to generate only one value. 
Omega is fixed, I am fixing it. It is the phase that has randomness in it, that 
is when the sin began I don’t know. Phase is a measure of when the sin 
began with respect to some reference or the signal began. And I am 
assuming this φ to be random variable, uniformly distributed in interval [-π to
π], because that is usually the case. The phase of signals are uniformly 
distributed.

Given this information, what is expected value of yk? Now very quickly, 
people look at sin and say, oh, average of sin, that is 0, but that’s in time. 
You’re supposed compute freeze time, stand at any instant in time and look 
at the outcomes. What are the reasons for these many outcomes at any 
instant in time, φ, φ is the random variable. So if you related to the notation 
that we’ve used, x is a random variable, g(x) is transformation. So here the 
g(x) is sin. Well, there’s an ωk, right. So expectation of g(x) is g(x) f(x) dx. 
What is the density function here for φ? Random variable is φ 1/2 π, because 
it’s uniformly distributed. So f(φ) is 1/2 π, the integral is not in time, it’s in 
outcomes space - π to π, that’s the possibilities for φ, and once you work out 
the integral, you get 0. Yeah that coincides with time average, but it 
coincides with many things. It also coincides perhaps with my marks and so 



on, but that doesn’t mean it is the same. It just happens to be that it’s the 
same as time average.

If you change, for example, as a simple homework, change the interval of φ 
instead of - π to π say it is 0 to π, uniformly distributed, and see if you get the
same average, very simple, right. You just change the possibility for φ from - 
π to π to 0 to π. Rest of the story remains the same and see what kind of 
average you get. That will be the simple exercise.

Okay, so the second moment that’s of interest is variance, which gives you 
an idea of the spread of outcomes. One gives the center of outcomes, other 
gives you the spread of outcomes, which is this variance. It is defined as a 
second central moment of the PDF, and once again here, the expectation 
comes in expectation of (x - mu)2. So you’re looking at how the outcomes are
spread with respect to the mean, which is the center and that’s why it’s 
called central moment, and you’re looking at a squared spread, squared 
distance, average of the squared distance of each outcome with respect of 
mu, average in a probabilistic sense, okay.

The square root of this variance is known as a standard deviation. So what 
we are giving you here are theoretical definitions of mean, variance and so 
on, never ever confuse these definitions with the expressions that we use or 
the formulae that we use for estimating them. Sample mean for example is 
an estimator of the mean. Sample variance is an estimator of variance. What
is the different between sample mean and theoretical mean? Sample mean 
works with time data [Indiscernible 00:15:11] in time, or across experiments,



likewise sample variance, whereas the true mean, true variance are looking 
at the outcomes, right. So one is a theoretical definition, other is an 
estimator. When we enter the world of estimation, we will talk of sample 
mean, sample variance and so on.

Okay, so once again here, it’s a second center moment, it’s an average 
expectation -- you should be extremely comfortable with working with 
expectation, and that is expectation that I have of you, okay. You can rewrite 
this variance as difference between the second moment and mu2. 
Expectation of x2 - mu2. Often this expression is useful.

Remember that any random variable by definition will have a non-zero 
variance, and non-zero and non-negative by definition. When the variability 
shrinks to zero, what does it mean? The outcomes are shrinking to one point,
and therefore, it becomes a deterministic variable. For this reason, variance 
is considered a measure of uncertainty. Higher the variance, more the 
spread, so in some sense, more the uncertainty, larger the uncertainty is, 
okay. That’s a very important thing to remember.



Okay, so over often, we scale random variables, for example, we may do a 
change of units and so on just to show you what happens to their means and
variances when you shift x by a constant, the expected value also shifts. The 
variance remains unperturbed, because variance is a central moment. The 
center has shifted but the spread may not change, and that’s a same story 
with this so-called affine transformation. Affine transformation is a big more 
than linear. So you have y = αX + β, many a times you do this kind of 
transformation of random variables. When you do that, the mean is altered 
by both α and β, but the variance is only influenced by α. So these are simple
formulae to remember.



When it comes to Gaussian distributed random variables, there are some 
special properties. One of the things that you should remember is when I mix
linearly mix Gaussian distributed random variables, I will always get a 
Gaussian distributed random variable. It need not be true of any other 
distribution. Furthermore, if these random variables. In fact, there’s a syntax 
error there, notational error. These x that you see here should be uppercase, 
I’ll fix that. So if I take n uncorrelated random variable, what is uncorrelated, 
we’ll discuss soon, either very briefly today or on Friday. When I am looking 
at n uncorrelated random variables, I am going to linearly mix them. When 
am I going to run into this linear mixing? When I am taking for example 
simple averaging of observations in time. Every observation is a random 
variable. Remember, that holds.

So in such situations, and I am linearly mixing n random variables that are 
uncorrelated, then the mean expression is given here, the mean of the 
resulting mixed variable is given. That has got nothing to do with 
uncorrelated, whether it’s uncorrelated or not, the mean expression is the 
same. It is the variance expression that you see at the bottom that makes 
use of this uncorrelated property. What uncorrelated means is that these 
random variables do not linearly influence each other, that’s all. That is as 
simple as you can remember. The moment we say two random variables are 
uncorrelated, what it means is that those two random variables do not share 
a linear relation. Maybe they are neither the sibling nor the first cousin, 
maybe they are the second cousin or third cousin, there maybe some non-
linear dependencies, but definitely there is no linear relation. That is what 



uncorrelated means. So these are some results that we’ll use, so there’s 
nothing great to discuss about this here.

Then you have the central limit theorem, which we use quite often in 
estimation theory, which basically says, when I mix linearly add up a bunch 
of identical and independent, earlier we used the term uncorrelated, now we 
are using the term independent. Independence is a much stronger 
requirement. When I say two random variables are independence, what it 
means is that, there’s absolutely no dependence at all. It’s like these random
variables have no blood relation, even though the aunt, uncle, grandfather, 
niece and so on, there’s nothing, there’s no non-linear function that relates 
them. When I take bunch of such random variables that are not necessarily 
Gaussian distributed, all it’s saying is they should all fall out of the same 
distribution, and I linearly mix them up. The more I mix, and as I mix more 
and more of them, the resulting random variable, always remember, 
whenever I perform I operation on the random variable, mathematical 
operation, the child that has born out of that operation is also random 
variable, has a DNA or randomness.

So why here, which is the outcome of linearly mixing these n random 
variables is also a random variable? And what this theorem says is, when 
these variables that you are mixing are independent and identically 
distributed, and as you keep increasing such random variables into your 
summation, y will tend to have a Gaussian distribution. That is what it says, 
and this is one of the reasons why the Gaussian distribution is also very 



popular, okay. And this is a result that is used in linear estimation widely. For 
example, straightaway, I can say sample mean.

How do I estimate sample mean? I am going to take n observations and 
simply average them out. Here I am saying ∑xi, but I could have ∑xi, 1/∑xi, it 
doesn’t matter, the result doesn’t change or the nature of the result. So 
when I am looking at sample mean, what am I doing? I am actually 
computing xx̄ 1/N ∑ x[k], each observation is a random variable, 1 to n. 
Regardless of what distribution observations are falling out from as long as 
these observations are independent of each other, xx̄ will always have a 
Gaussian distribution as n goes to infinity. Of course, if x[k] for all sort of the 
Gaussian distribution, then xx̄ regardless of n will always have a Gaussian 
distribution. So the central limit theorem is quite useful in deriving so-called 
sampling distributions or distributions of estimate, which we will talk about 
later on.

Until now, we have discussed single random variable, but very often, we will 
have the need. In fact, that is what we will do, we will have to analyze more 
than one random variable at a time. So when I look at a random signal, now 
if you think of a signal, I am hoping to build a model. How am I hoping to 
build a model by exploiting the correlation between at least two 
observations. I am hoping that one observation influence another, maybe 
more than one observation influences, that’s okay, but even if I just take a 
pair of variables, I am hoping that there will be some correlation between 
them.



So I need a formal definition of correlation. I need a formal way of analyzing 
two random variables, simultaneously. So I am going to now pick some of the
random variable here and I want to ask here is v[k1] and here is V[k2]. So I 
have random variable 2, random variable 1. Now I need to know how to 
analyze them jointly, and that is where the notion of joint density comes in, 
okay. So the joint density now allows me to analyze more than one random 
variable at a time. So now we are going into an outcome space that is more 
than one dimensional, and as usual joint densities have this interpretation, 
the standard interpretation, that is the area under the joint density will give 
me the probability now.

Off x and y, these are the random variables that we are looking at, taking on 
values within a cell. Earlier we were talking of the interval, now we are 
talking of a cell, and you extend this idea to three-dimension, four-dimension 
and so on, then you’ll get different kinds of, what do you say, geometrical 
shapes. So once again, the joint density function has the same interpretation
as your univariated density function.

And in the context of two random variables, typically we ask two questions. 
One, what is the probability that x will take on some value in an interval 
regardless of what y takes, and the other question is what is the probability 
that x will take on a value within interval when y has taken on a specific 
value. So you can give numerous examples, a standard example is height 
and weight. I randomly pick an individual. Height and weight are random 
variables. I cannot predict. So two questions I can ask. I randomly select an 
individual. What is the probability that a person’s weight an interval 



regardless of the height. The other question is, what is the probability that 
the individual’s weight is within the interval given that the height is this?

These are two different questions. So to answer these two different 
questions, you need what are known as marginal PDFs and conditional PDFs. 
Marginal PDFS are essentially projections of this two-dimensional joint 
density onto a single one, because you are only concerned about one 
random variable. Conditional PDF has got to do with conditioning the PDF. So 
how is the marginal PDF defined? Well, simply the projection of the -- you can
say, when you evaluate the area only along one dimension, you will get the 
marginal PDF in the another dimension. So you are kind of collapsing the 
two-dimensional joint density into a single one. So you have the respective 
marginal densities for x and y.

These are not necessarily the same as univariated density functions of those 
respective random variables, please remember that, okay. And typically, we 
denote marginals with the subscript x and y, whereas the conditional PDF, 
and this is where I will stop, the conditional PDF is defined using he base rule
or the base formula as the joint density by the, in fact, strictly speaking, 
there should be a marginal density in the denominator here. So if I am 
looking at f(y) given x. Suppose I am interested in evaluating the conditional 
probability of y given x, then I need the conditional PDF.

For this, that is I consent the conditional PDF from the joint PDF this way, f(x, 
y)/f(x). There are many, many situations in which we run into conditional 
statements. For example, if I am looking at a game, I want to predict what is 



outcome before the game begins. Let’s say, that is one random variable. 
Score is another variable, as the game starts, let’s say it’s a game of cricket. 
So if I were to look at the outcome of the game as random variable, what is 
the probability that the outcome is either 1 or 0 that is regardless of the 
score, you don’t know what the score is.

Now as I keep giving you the score, I say, this is the score, this person is 
batting, these many overs have been balled, whatever, one of the things that
I give you, pieces of information, you expect that the probabilities will keep 
changing, right, at least for a long time into the game, because you expected
dependence between the score and the outcome, right. You said, no 
regardless doesn’t matter, I know the team is going to lose today, then that 
means you are a bookie, okay. That means you have figured out who will win 
and who will lose, or maybe you have a very accurate prediction. You are one
of those, you are either an oracle astrologer or you’re a bookie, but there are 
many events where the outcome of y has no bearing on the outcome of x, 
whatsoever, in any manner, then we call them as independent events, that is
independence, in which case the joint density can be simply written as a 
product of marginal densities. That is what is independence.

So when we meet on Friday, we will review this, we’ll continue this review 
and move onto random signals where we’ll also learn auto correlation 
functions.


