


Arun: Very good morning. Let's get started. So what we learned yesterday is how random signals
are challenging to model and what is the general framework for system identification if  you
recall. We are actually focusing on this kind of setup and where now we are learning, we are
going to just review the concepts that will help us model VK and we have already said that this
VK is going to be modeled as a white noise passing through a linear filter. And we have also
stated conditions namely stationarity and spectral density. So it's time to review those concepts
that will allow us to understand these conditions, characterize the signal which is the random
signal VK. 

Now yesterday I did mentioned to you that random signal is actually an ordered collection of
random variables. So this is one realization and at each point in time we think of this as a random
variable.  So first we understand how to describe the signal at any instance in time, and then
quickly review those concepts that will allow us to put them together. In the end what we are
going to do is we are going to work with tools that will allows us to [00:01:59] the signal in time
but you should always realize remember that this random signal whatever descriptions that we
give whether we describe it at any point in time or we look at the entire signal itself we are
actually looking at multiple realization. That is the collection of realizations. So the difference
between a deterministic signal and random signal is this additional dimension called outcome
space which will become clear once we review the theory of random variables.  So let's now
move on and ask how the random signal is defined at any instance in time. And as I have always
been saying when we think of random variables we let go the notion of time. We don't worry
about time. 



Now there are different ways of defining a random variable. A simple way of remembering it is
that it's a variable that has multiple possibilities in itself. Given all the conditions that generate
the random variable there are multiple possibilities unlike a deterministic variable. Like I said
suppose there is a function sine of X or sine of whatever it is and I give a specific value of X is
only one possible value. Whereas with the random variable there are multiple possibilities again
recall our discussion yesterday this is just our imagination that there are multiple possibilities
from which one of  the  possibilities  will  manifest  as  outcome.  That  you should  keep telling
yourself until it is reinforced well in your mind. 

Now the set of all possible values is called a sample space. And there are numerous examples
that we have been hearing, we have been coming across since our high school days. There is
another  definition of random variable  which is more formal.  It  basically  says that a random
variable is essentially a mapping from the possibility set to the real number space. Why was it
defined this way because there are many outcomes that are not necessarily numerical. You can
have a categorical outcome. 

Now in  order  to  have  a  unified  theory  of  probability  our  variable,  our  mapping  had to  be
introduced and that is the random variable. So for example in a game you may have victory, loss
and draw. But we want to convert them to numbers. And this notion of random variable allows us
to map the categorical outcomes to numerical values and the choice is yours. 

Now as far as the working definition is concerned a random variable is that variable which has
many possibilities and this possibilities are numeric. Out of which it will take on only one value.
And how does it take on and so on what is characterized by the probability distribution function.
But before we talk about that it's important to note that there are two classes of random variables;
discrete valued random variables and continuous value random variables. 



We will not worry about the very rigorous definitions of these discrete value and continuous
value random variables but it suffices to know that random variables that take on only discrete
values that is not all numbers on a continuum they are call discrete valued random variables. You
can think of for example population, or when you roll a dice what number shows us and so on.
These are all  discrete valued random variables and the other thing that I keep telling all  my
students  is  when  you  think  of  something  as  a  random  variable  you  need  to  have  a  right
justification  in  your mind.  Why are you treating  that  variable  as a  random variable  and the
justification that is generally very convincing is that I cannot predict it accurately. So if I roll a
dice the value that shows up on the face I can treat it as a random variable because there is no
way I don't have any formula to predict it unless I am Sankuni but otherwise I cannot. Unless I
am doing some match fixing for example but we will  rule out those situations.  In a general
scenario there is no way I can predict accurately what shows up when I roll a dice. Therefore it
justify to think of it as a random variable. 

So each time you think of something as a random variable it is important for you to have this
justification at the back of your mind. That's a very good habit and it's an important habit to get
into because very often people just assume signals to be stochastic, variables to be random and
so on without necessarily thinking why they should be treated as random. 

Continuous valued random variables by their very name indicates that this random variable takes
on continuous values like the temperature, reading from sensor and so on. In fact, if you think of
it reading from a sensor strictly cannot be treated as continuous valued random variables. Why?
Suppose I am looking at temperature sensor. On the face of it appears that the random that I can
think of this temperature reading as a continuous valued random variable. Again you have to ask
why am I treating the reading as a random variable? What is the reason? Better way of stating? 

Student: [00:08:12]



Arun: Why?

Student: [00:08:19]

Arun: So you have to be very clear. There is going to be error in the reading and I am not going
to be able to predict the error. In other words, when you thinking of some variable as a random
variable not only you need to have the justification you also have to – have some idea of the
source of uncertain. So the source of uncertainty in temperature reading is a sensor error. If not
anything  you  have  known all  disturbances  and  so  on.  So  there  is  this  source  of  error,  the
uncertainty that you have to keep in mind. Now just now I said on the face of it, it looks like a
continuous valued random variable but if you look at it closely it isn't and that's because for all
practical purposes these readings are quantized. So you can argue that no it has to be discrete
valued random variable. But we assume that the quantization is very fine. And for all working
purposes we will assume it to be continuous value. But strictly speaking all your readings are
actually discrete valued random variables due to quantization. Keep that in mind. In this course
we will primarily deal only with continuous valued random variables but a lot of theory that you
learn more or less applies with some differences. So one of the things that characterizes a random
variable completely is probability distribution function. We know that.  Why does this come into
picture  because  we  have  said  already  random  variable  is  that  variable  which  has  multiple
possibilities out of which we will assume one value. 

Now which one assume – which one does it assume, what is – does it have equal chances of
assuming any value or are there certain values that are more likely than the other ones and so on.
That is what we mean by chances. We usually assign chances. And those chances we call as
probability and how these chances are distributed or probabilities are distributed across outcomes
is  what  is  characterized  by  probability  distribution  function.  And  to  formulate  things  we
introduce this cumulative distribution function also known as a probability distribution function



which is nothing but the probability that this random variable you know the notation the upper
case is used to denote the random variable and the lower case is used to denote the value. So the
cumulative distribution function also known as a probability distribution function is a probability
that X will take on some value any value from the left extreme. We are looking at univariate
random variables, from the left extreme to the point of interest, to the value of interest. So it's a
cumulative  one.  And for  a  continuous  valued  random variable  F  of  x  would  look like  this,
generic F of x. Assume that I am going to clip the left extreme here. And let's say the right
extreme  is  here.  It  may  not  be  symmetric,  please  don't  get  the  impression  that  always  the
outcomes are symmetric about the origin. typically you will see this kind of a – of course the
value extreme value at the extreme right extreme the value of F of x is one and at the left extreme
the value is zero. This is X min and this is X max. 

By definition cumulative distribution functions are always positive, non-negative value and they
are monotonically non-decreasing. And there are couple of other conditions and so on. So at any
point your CDF cannot exceed the value of unity for obvious reasons. And it cannot decrease.
And the other obvious thing is at the left extreme F of x is zero and the right extreme it is one. So
this is – these are the features of any CDF suppose I give you a function and claim it to be CDF
you have to do all these checks if necessary to convince yourself that yes it qualifies to be a CDF.
Not all functions qualify to be CDF necessarily.

Now since we are dealing with continuous value random variables it is convenient remember this
word, it is convenient to work with the probability density function. If you are uncomfortable
with distribution probability distribution as I always say turn to mechanics and think of mass
distribution functions. You must have read how mass is distributed and so on. There we come
across the motion of density. It will – it could be mass per unit length, mass per unit area, mass
per unit volume and so on. But we can speak of such density only when the mass is distributed
contiguously. There has to be contiguous space. There cannot be gaps. Since we are looking at F
of x that is in fact you can – that is stricter definition of a continuous valued random variable.
Random variable is said to be continuous valued if its CDF is continuous and differentiable. 

Earlier I said I gave you a working definition but this is stricter definition. Anyway for all such
random  variables  now  we  can  think  of  a  probability  density  function  and  there  are  two
definitions  of  this  density  function.  One  is  that  the  area  under  the  density  gives  me  the
probability. That is how you also see definitions of densities in mechanics. So the area under
density gives me probability. The other definition is the derivative of the CDF will give me the
density. So if I were to draw a standard Gaussian PDF notice that I use lower case f and this is
dimension to denote densities. You have to understand that by looking at the notation. So once
again here let's say I have X min and X max. A Gaussian PDF would look like this the most
familiar one. Of course it tapers off, it doesn't exactly [00:14:40] but just to give you a rough
sketch. I will show you a few sample PDFs by this one.

Now the area under this PDF gives me the probability. You should always remember that. If I am
looking at  an internal  AB, this  is  the probability  that  A takes  on values.  X takes  on values
between A and B.  therefore by definition area under the density function is unity because it's a
probability that something should occur. 

Now one of the misinterpretations that people generally end up having is that the value of the
density at any point is the probability of X taking on that value. So quite often at least beginners
make this mistake that F of x is equal to probability that X equals X. Now unfortunately, for a



continuous valued random variable this is wrong. For discrete valued random variables we do
not work with density functions, we work as what are known as mass functions. They are also
derived from the CDFs. For discrete  valued random variables  this  interpretation is  okay. for
continuous  valued random variables  this  interpretation  is  not  correct  because  for  continuous
valued random variables the probability that X will take on a specific value is zero. Now that is
the irony that you can say some kind of a peculiarity in probabilities that the probability will be
non-zero  over  an  interval  but  zero  at  a  point  and  that's  because  probabilities  are  measure
functions.  They are  measures.  They are actually  [00:16:33]  let's  not  get  scared but  they  are
essentially measures. So if I ask you what is the area of a point. Area is a measure. And you
would come up with answer saying zero. So probabilities are also measures and the measure of
this – this measure at any point is zero. 

So in a space of continuous or continuum if you are to ask what is the probability that X will
exactly take on some value that is zero. On the other hand if the interval is infinitely small then
the probability is non-zero. So in other words I can approximately say that for example F of x
times dx is roughly the probability or you can say Delta X  take on values between X and X plus
dx.  This  is  an  approximation  that  we roughly  use  and this  becomes  better  and better  as  dx
becomes smaller. But it cannot be zero. Dx I mean arbitrarily small. But it cannot be zero. That's
why it  is  infinitely  small.  So there  is  something to  remember,  do not  interpret  density  as  a
probability  at  a  specific  value  because  for  continuous  valued  random variables  there  is  the
probability that X will take on a specific value is zero. 

Now these are some examples of CDF and PDF. Commonly used ones. On the left extreme by
the way the top panel here shows the CDF and the bottom panel shows you the PDFs. On the left
you have Gaussian density at the bottom and the Gaussian CDF at the top. And in the center you
have chisquare PDF at the bottom and Chisquare CDF at the top. And on the right you have not a



density  function  but  a  mass  function.  And  this  is  for  a  binomial  distribution.  That  is  for
binomially distributed random variable. 

I am not going to go into the definition but some of you maybe familiar. So if you look at this the
CDF unlike for the continuous valued case it's  staircase like function because X cannot take on
values within I mean between two points. It can only take values at specific instance. So the
probability that X will take on any value between two points is zero. Therefore the increment is
zero. And remember F of x is , the big F of x is incremental function. It is increasing but we said
before it is monotonically non-decreasing. We are very careful. Mathematicians are extremely
careful. They are as precised as possible. So hopefully now you understand. 

Now PDFs if you look at PDFs there are many many density functions and don't think that these
are fictitious. Generally, there are a class of phenomena associated with the PDF. It is not that
suddenly people decided that okay let us prepare syllabus on statistics where we will propose
some 100 different density functions and whoever liked whatever came to one person's mind the
density function did not show up just like that. These density functions have come by way of
observing  the  phenomena  around.  It  could  be  natural  phenomena.  It  could  be  man-made
phenomena and so on. The Gaussian or the normal PDF literally you can say normal I mean
that's what you see everywhere being assumed and also counted is one of the most common ones
for various reasons. And we will perhaps learn those reasons shortly but you know very well that
when it comes to anything large you think of a Gaussian PDF but that need not be true all the
time. 



Then you had the Chisquare PDF and then you have the uniform density function. Each of this
has a mathematician expression. That's the first thing you should observe. At least the three that I
am showing you on the screen.  And secondly each of these PDFs is  characterized by some
parameter. Those are called a parameters of the PDF. For example in Gaussian you have mu and
sigma. Those are the two parameters. Whereas in uniform density function I have A and B. and
in Chisquare it is a degrees of freedom that which is a parameter. So each PDF if there is a
mathematical  expression  is  characterized  by  one  or  more  parameters.  Now  not  all  PDFs
necessarily have mathematical expressions. You have to understand that. There are quite a few
PDFs  that  are  just  tabulated.  There  is  no  mathematical  formula  for  it.  So  it's  obviously
convenient  to work with PDFs that have close formed expressions like this.  And fortunately
these are the ones that we normally run into. Of course there are others like Poisson distributions
and so on but you think of Poisson distributions for discrete valued random variables and so on.
As far as continuous valued random variables are concerned the typical ones that we encounter at
least  in  linear  modeling  or  linear  random  process  are  the  Gaussian  density  function,  the
Chisquare and the uniform. 

So  you  should  have  sufficient  familiarity  with  these  three  density  functions.  As  a  simple
homework  go  to  the  net  or  any  –  consult  any  resource  and  find  what  are  the  phenomena
associated with each of these densities or distribution functions. 

For example things – they will tell you Chisquare, sorry Poisson which I am not showing you
here. Distributions are associated with number of events happening in an interval. It could be
accidents, or it could be number of people passing through in a certain interval or space of time
and so on. Those density functions are associated with distributions of averages for example.
Anything that is an average and has been constructed from averaging a large number of random
variables follows a Gaussian density function. That's what is essence of central limit theorem
which we will very quickly touch base on.



So message is that PDFs can have closed form expression I mean have closed form expressions
or may not have closed form expressions. And each PDF is associated with some natural or man-
made  phenomena.  So  by  looking  at  the  phenomenal  maybe  you  can  figure  out  what  the
appropriate PDF is. It's not always easy to do that. 

Okay. Now that we have spoken for few minutes on PDFs and CDFs practically when it comes
to dealing with random phenomena it is not the PDFs that we generally work with. As a simple
example that I always keep giving, [00:23:28] a new city and I have to make a decision on what
clothes to pack. It's a completely new city. I don't know. I have never been there and so on. So
one of the decisions that I have to make is what clothes to pack, what kind of clothes, it should
be woolen clothes, cotton clothes and so on. That depends obviously on the temperature there,
the climate there. 

Now obviously the temperature in the new city I cannot predict. So I will treat it as a random
variable. I cannot predict accurately and when I am making a decision I go to this website where
there is a description of the city. The climatic conditions and so on. Today you have everything
documented. And when you look up the climate part the description is never stated in terms of
PDF. Even the person who wrote this  –  who is  author  of  this  website  knows very well  the
temperature is not predictable accurately. Maybe also knows that it's a random variable but very
rarely or I have never seen the PDF being given. Have you been seen a PDF being given for a
temperature in a city? Instead you are given some other pieces of information. And what are
those pieces of information? Average,  minimum, maximum. They are giving you some idea.
They are giving you some idea but not the full idea. Always for a random variable if you want
the full information the PDF has to be given or the CDF has to be given. But the PDF is never
given, why can't I get the full information because that may not be needed. If I want to get going
make some initial decisions and so on it turns out that I don't need the full PDF. And there is
another factor which is that estimating the PDF of a random variable from data is a lot more



difficult compared to estimating these pieces of information called the minimum, average and so
on. 

Let me put it the other way. The number of data points for example that are required to reliably
estimate PDF maybe much more then the number of data points that are required to reliably
estimate the so called moments of a PDF. The moment you think of a density function that
moment and this moment come together. So the moment you think of a PDF you can or any
density  function  you  also  think  of  moments.  In  mechanics  we  have  moment  of  inertia  for
example. How do you calculate moment of inertia or you talk of other kinds of moments like
center of mass, center of gravity and so on. What are they? They are moments. They are giving
you some idea. They do not tell you how mass is distributed. So if I look at center of mass it's
going to tell me where the center is, around which the mass is distributed but it doesn't tell me
how the mass is distributed. But maybe I don't need it. So the reality is that as you will see also
in linear random processes you do not need to know the PDF. If you know the PDF excellent. It's
great. Then you have the complete information, complete description is available. But if you do
not know can you still go ahead and deal or work with random phenomena, the answer is yes. By
working with what are know as moments of a PDF. 

Now  the  two  moments  of  interest  are  the  first  moment  of  the  PDF  which  gives  you  the
geometrical center, sorry statistical center of the outcomes. And I have a random variable I know
that there are many possible outcomes but to make some initial decisions like your packing the
clothes, the two critical pieces of information that I require are the average temperature and how
– what is the variability in the temperature that I get to see on any given day. 

Given this I can make my decisions and keep moving on in life. That's exactly the situation here.
I should be at least given the center around which the outcomes are spread and how far the
outcome are spread, some measure. These are respectively mean and variance and they happen to



be related to the moments of the PDF. Any nth moment of the PDF is defined as X to the integral
X to the n F of x dx strictly speaking there should be a denominator term as well with integral F
of x dx but we know already that the integral F of x dx is unity. So we don't include that in the
definition. 

So the first moment I have already said that for linear random processes is a sufficient known
mean variance and something else called covariance we will revisit this point at a later time.


