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Okay, very good morning. We’ll continue with our discussion on discretization, so just to recap 
we learned yesterday what is concept of discretization, why we would be interested in 
discretization. And then we learned a method of arriving at the discretized model from the state 
phase description of the continuous time process and again I should say that discretization is 
fairly generic, 
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the particular discretization that we are looking at is under the ZOH approximation of the 
continuous time signal, at the input side, but otherwise as we mentioned yesterday there are 
many different ways of arriving at the discretized model, but whatever discretization method 
you come up with, there will be some error involved in it, but maybe for certain class of signals 
it will be exact, so this discretization that we are discussing is exact for step signals, and that is 
why this is called a step invariant discretization. And by default this is the discretization that 
you get to see in the literature.



And in MATLAB you arrive or you compute this discretized model using C2D, and if you were
to type the help on C2D to bring up the help on it, okay, so in the mean time we can discuss this
MATLAB is firing up. So if you bring up the help on C2D, you will see that there are many 
options ZOH, FOH and in my textbook you will also see mention of other kinds of 
discretization, many textbooks will present this as a matter of going from the Laplace domain to
the Z domain, so in the continuous time the system is represented by G(s), that is the transfer 
function. And in the discrete time you have G(z), and many textbooks would say well how do I 
go from S plane to Z plane, which is different way of saying how do I discretize the underlying 
differential equation, it’s just a different way of saying it.

And one of the things that you will find quite often is this Tustin approximation as well, which 
gives you another way of moving from the continuous time to the discrete time domain, this is 
not the ZOH discretization, in this kind of approximation you will arrive at G(z) by replacing S 
in the transfer function with some relation between S and Z, I’ll perhaps talk about it a bit later, 
but this Tustin approximation is used quite often, not necessarily in arriving at discrete time 
models of processes but in deriving digital controllers given analog controllers.

See when control began, it began with the analog domain theory and somewhere during the 
world war and post-world war era when the digital revolution started to happen, people started 
thinking of digital control and that’s where your computer base process control, or computer 
process control came into practice, at that time there were many questions that were asked and 
one of the questions that was asked was I have the set of analog controllers with me, how do I 
move from analog to the digital domain? How do I design a digital controller that achieves a 
same performance as the existing analog controller, and most of this analog controllers are PID 
controllers and for those of you who are familiar with PID’s, you know PID’s are also LTI 
objects, LTI systems and they have a transfer function description, so you will see in many 
digital control text books, a class of methods that derive the digital controller starting with 
analog PID control, when I say controller here I’m talking of PID controllers.

So they start with a analog PID and then move on to a digital PID using one of these 
approximations, they may not use ZOH discretization because the discretization there is 
different, right, but all of this qualifies to be called as discretization, any moment from 
continuous time to discrete time is discretization, here we are looking at ZOH discretization, but
if every discretization as I said first thing involves an errors, second thing involves a mapping 
of the stability region, right, under ZOH discretization what we learnt yesterday is that the left 
half plane here which is the stability region, right, 
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so this is the imaginary axis of in S plane and this is the real axis, 
(Refer Slide Time 05:35)

so all of this actually is the stability region, right, for the continuous time system and we know 
under ZOH mapping, we’ll talk about the Tustin approximation bit later if time permits.

Under ZOH mapping the stability region for G(z) given by the eigenvalue mapping theorem, 
the stability region maps to the unit circle, okay, again this is not such a great circle don’t feel 
unhappy about it, 



(Refer Slide Time 06:14)

one of the course that I really did not love so much was engineering drawing, okay, so that’s 
your stability region, we can do a post correction here to make it look like a circle and change 
the axis.

Now is that correct what I have drawn? It’s correct or not? Right, sorry, I’m sorry, marginal 
once we can draw separately, so we can say the imaginary axis here, right, maybe we need a 
different color, the imaginary axis here maps to, and also remember that’s sampling introduces 
periodicity, okay, that is another thing that you should not forget.

Now the other thing that should be kept in mind is that now you have the mapping, although we
have derived it in the state space context we know eigenvalues and poles are the same, so if 
lambda I is the pole here, E to the lambda I TS is the pole in the discrete time, right.

Now all stable poles have a negative valued real part, therefore what can you say in general 
about the pole in the discrete time, okay, let me be more specific here, if you look at this semi-
circle here, the poles can also take on negative values, sorry the unit circle here, the poles can 
take negative values as well, right, if you look at the left half of the circle, what do those, so 
what is this region here correspond to in this S plane?
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Or it’s not possible, or is it possible? In other words let’s pick a negative pole here so I have, let 
us say a discretize system I claim has a pole at -0.5, so now we are talking of the inverse 
mapping, right, what is the inverse mapping equation? Suppose we call this as lambda D, I 
mean this is lambda D let us say discrete time, this is lambda C continuous time, so what we are
given here is that lambda, there is a single pole at -0.5 for a discretize system that’s a claim,
(Refer Slide Time 09:23)

 there exists a discretize system whose pole is at -0.5, it’s a first order system.



What is the corresponding continuous time pole here? In general what is the inverse mapping? 
1/TS, so this is the forward mapping is E to the lambda I/TS, and the reverse mapping or 
inverse mapping is 1/TS line of lambda DI, okay, 
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now I have given away most of the answer, why? Okay, so what? Logarithm of a negative 
number cannot be taken, seriously. Are you very serious about it? You can’t take a log of 
negative number? Now way, you want to think about that answer again? How? So you have to 
give a complex representation to it, right, I would agree that logarithm of a negative number 
don’t exist when you fear in high school when you say that, if you are not expose to complex 
numbers, I think these says complex numbers are introduced much earlier just because they 
thought maps is not complex enough so for high school kids.

Now, correct, so you write a complex representation for -0.5, and then take the logarithm, the 
result is an imaginary complex valued, right, the imaginary number, so what this means is under
ZOH discretization if I have a negative valued pole in the discrete time then the corresponding 
continuous time system will have imaginary pole, right, complex pole in fact, is that 
meaningful? Can I have a first order continuous time system with complex pole? Is there a 
physical system such as that? Does it make sense? What do you think? It’s strange, it’s weird 
you can’t even imagine a physical system having that, I can imagine a physical system with two
complex poles that are conjugate of each other, we know that poles always occur in conjugates, 
but here there is a single pole, its being maybe divorced from its conjugates somewhere or it’s 
lost in some storm or whatever, but this is single complex valued pole, you cannot have a 
physical system like that, you can’t think, if you get to think of it let me know, but we can’t 
construct a physical system which has a complex valued pole in the continuous time, what does 
this tell us now? 

Yeah, but what does this tell us about this mapping now? Theoretically we say the left of plane 
maps in the continuous time to the unit circle will be Z plane, but now we have realized any 



pole in the discrete time with negative real number doesn’t have a counterpart here, so strictly 
speaking under ZOH discretization we should forget this region, 
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that means there is no way I  can have a ZOH discretize system that results in an negative value 
discrete time pole, try doing that it’s not possible, whatever you have here lambdas, you have E 
to the lambda I/TS right, that is a mapping, whatever negative value here E to the lambda is 
always going to be positive value, is that clear? So which means you have to be careful when 
someone claims that there is a discrete that, there is this discrete time system that has been 
obtained by a ZOH discretization of continuous time process, but this is only true for ZOH 
discretization, other discretization may involve other kinds of mappings, okay, now there exists 
naturally discrete time systems that can have negative valued poles, that’s not a problem, but 
that may not correspond that will not correspond to a physically realizable continuous time 
process and if you claim it is come from a ZOH discretization.

And the stability region still happens to be the unit circle, in general if I give you a discrete time
system, the stability region happens to be the unit circle itself, that doesn’t change, okay, so this 
mapping here eigenvalue mapping theorem has a shed light on number of things, at least two 
important things, one how this stability region maps, this mapping business we have studied in 
mathematics also, usually we study this in either note 12th standard math or maybe first year 
undergraduate map, conformal mappings and other kinds of mappings.

So very important to understand how things mapped when you are looking at either a 
discretization or a transform or whatever kind of thing that you go from one domain to another 
domain, okay.

So the second thing that has taught as is that there cannot exist as ZOH discretize system with 
negative value poles, clear or you are still in doubt? Nithya, okay? Yes, correct, no no, no no no,
that’s a big mistake to say that, so if you look at it, look at that is where you have to distinguish 



between a discretized discrete time system and the naturally occurring discrete time system, if 
you are examining at discretized ZOH discretized system or in fact any, in this derivation for 
AD the mapping that we derived, we have not assume any ZOH discretization, so any kind of 
discretization will result in this mapping, only the B part changes depending on whether you’re 
using ZOH or not, so only when you’re discretizing this is the story, so what is a question now? 

Oh I see, okay, I understand what you are saying, correct, so yeah, you’re perfectly right in that 
sense, correct, so we can extend this observation to even other kinds of discretization that’s the 
point that he’s trying to make, because and that’s a very good point, because the expression that 
we have derived for AD did not make use of the ZOH at all, so we will embellish our statement 
further saying any kind of discretization that you are looking at can never result in a system 
with negative value poles, okay, thank you, good.  

Alright, so now of course the discretization will have an impact on the zero locations and so on 
and that takes care I mean that is reflected in your B matrix and so on, we’ll learn a few more 
things as we go along. The second part that we should remember is that now this is true under 
ZOH discretization that the gain is preserved, so the first result that we learnt is how the poles 
map, and the pole mapping sheds light on many things, one how the stability region maps, two 
what kind of discretize systems are possible, that means with what kind of poles, and thirdly as 
I said yesterday it will guide us on how to choose a sampling interval, which will talk about a 
bit later.

So the second result here is that the gain is preserved under a ZOH approximation which is very
nice to know. 
(Refer Slide Time 18:16)

If this is not the case then I have to keep correcting for the gain all the time in digital systems, 
so whenever I use a ZOH and the sampler together only the gain is preserved, you can’t really 



take out, you can’t say only sampler and continuous time, you can’t discuss that you have to 
talk about the three elements together, and the proof is fairly straightforward as you see on the 
screen, this is used in verifying for example if your discretization is correct one, two, to straight
away figure out the gain of the continuous time system, so which is very nice to know.

Pole mapping I had to do a reverse mapping here, inverse mapping. Gain there is nothing to 
map, whatever gain I identify for the discrete time system is the same as the continuous time, so
that’s good news I don’t have to put in any extra effort, so we have talked about poles, we have 
talked about gain, then there is one more vital statistic which is the zero. 

Do the zeros map in the particular way? Unfortunately no, there is no expression that allows us 
to figure out how zeros map, that is zeros of the continuous time system to the zeros of the 
discretize system, there are some approximate expressions at very fast sampling rates, but 
otherwise none, in fact surprisingly a continuous time system may not have a zero, but the 
discretize system can have a zero, okay, and that phenomenon you get to see as you start 
dealing with second and higher order systems, first order system it’s very nice, for a first order 
continuous time process you only have a gain and a pole, the first order corresponding 
discretize system also has a pole, gain is always there anyway let me not say that there is a gain 
and a pole, there is a single pole for first order in continuous time, and a single pole in for the 
discretized system as well. 

But when it comes to second order continuous time systems the number of poles is always 
preserved, but the zeros are not necessarily preserved, what does this tell us? It tells us that the 
way the continuous time system interacts with the input, how? It is wired with the environment 
is different from the way the discretize system is wired, in fact zeros have another meaning 
also, if you turn to filtering they will tell you that the filtering theory will tell you that zeros tell 
you which inputs are being blocked, right, so if I have a continuous time system let’s say which 
has a zero, let us say S-1 and here let’s say I have S-2, here S+2 stable system. 
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The zero for this continuous same system is located at one.

Earlier I said, just now I said that zeros tell you which inputs are being canceled out or blocked 
and so on, here to this system suppose I apply an input of E to the T, continuous time input, 
what is the Laplace transform of E to the T? 1/S-1 so, if I were to determine the response to 
such a signal, when I say it is blocked it is not really zero tau, but the effect of the input is 
cancelled out, E to the T is an exponentially growing signal, Karan, so Y(s) is we know G(s) 
times U(s), I have S-1/S+2 time over 1, S-1, 
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alright, and what the system does is it’s able to handle that E to the T very well, and produce in 
fact you can simulate the system to the E to the T in your, in MATLAB for example, and see 
what response you get, that’s all. 

It’s a very strange thing, right, it has completely killed the growing characteristics of or this 
explosive characteristic of E to the T, any other explosive signal it cannot handle, I mean it will 
produce an unbounded signal, only this input it’s able to block, so the zeros have another 
interpretation in the sense that it kinds of squeezes the juice out of that input completely, and 
the system will produce its own transient behavior, the same applies to, I mean here I’ve used 
S-1, you could also use S+1, same applies to discretized, I mean discrete time systems as well, 
why are we discussing this? What we are saying here is if the system didn’t have a zero for 
example, it’s just 1/S+2, 
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then the system will not be able to do much do anything, whatever the input is given it will 
reproduce at the output, discrete time system will also behave the same way, because we just 
now said first order maps to first order, no zeros introduced.

On the other hand, if I have second order continuous time system and I discretize it using this, 
under this ZOH discretization, I won’t keep saying ZOH it’s understood we are looking at ZOH
discretization, 
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you can find that there is a 0 coming up, I’m not going to go through the theoretical calculation 
its’ very easy to show that you will get it, in fact let’s do that, although I’m not going to derive 
the final answer for you, but it’s easy to show, suppose we pick some second order continuous 
time system, right, and I want to figure out what is the corresponding discretized system under 
ZOH, how do I do that? 
(Refer Slide Time 25:25)

With the method that I have learned what will I do? I’ll write a state space description for this, 
and then use the state space formula, and then from the state space I arrive at G(z), 
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so it’s like a very circuitous route that I can follow, so I’m given a transfer function description 
in the continuous time, I write a state space representation in a continuous time, go to state 
space representation in discrete time and then arrive at transfer function in discrete time, very 
circuitous route, fortunately there exist another route which directly takes it from transfer 
function to transfer function which we will learn very soon.

But even without learning that we can understand that a continuous time system, second order 
continuous time system without a zero can result and in fact in general results in a discrete time 
system with a zero, how do we see that? In a very quick manner how can you see that? Without 
actually deriving the expression for this, any ideas? That delay is okay, delay won’t introduce 
the zero, normally in the past years that I have taught and I have asked the question on 
discretizing a second order continuous time system, students with religiously use the method 
that will very soon discuss, and then arrive at G(z), there is nothing wrong with it, but it is 
going, and it’s a bit laborious to do that.

It’s easier to break up the second order system into two first orders, right, so imagine this two 
first orders being made up of, sorry, the second order being made up of two first orders in 
parallel, which means I’m going to write this as C1/S+A + C2/S+B, what is the advantage? Do 
you see, do you forcing the advantage? I’m sorry, I can operate them, correct and then arrive at 
individual discretize systems, discretization is a linear operation, okay, correct, so that is the 
idea here by breaking this up into two first orders in parallel, I can derive now the individual 
G1(z) and G2(z) and then say well G is G1+G2, 
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what is the advantage? Because first orders are very easy to remember, all you have to do is 
gain and pole mapping, I don’t even have to implement any formula, straight away I write the 
pole for G1(z) and adjust the numerators as the gain is preserved.

What is the gain of the continuous time system? Really, what is the gain of the continuous time 
process that we have written on the board? Why there is so much silence? K/AB correct, I 
thought I heard only K, sorry, okay, so K/AB, so all you have to do is for G1(z) you just have to
adjust, so this would be S, it will be Z here minus, where is the pole now? E to the A? ATS? –
ATS, 
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pole is at –A, right? So the denominator part has been taken care of, and I just have to adjust 
this numerator such that the gain of this is the same as the gain here, so here the gain is C1/A, I 
can find out what is C1? So I just call this as some K1 prime, 
(Refer Slide Time 30:16)

likewise for G2 then add them up, right, so K1 prime/Z-E to the –ATS + K2 prime/Z – E to the 
–BTS, clear? 
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Now can you see that the zero can emerge? Without evaluating K prime and so on it’s fairly 
obvious now that the discrete time system has a zero, the continuous time case also you can say 
that maybe zero no, but C1 and C2 are chosen in such a way that there is no zero, there is no 
such requirement for the discretize system, so this is a very simple way of realizing that even 
though the continuous time system may not have a zero, the discretize system can have a zero. 
Any questions?   

Online Editing and Post Production

Karthik
Ravichandran
Mohanarangan

Wilhelm Benjamin Anand
Sribalaji
Komathi
Vignesh

Mahesh Kumar
Akshai Kumar

&

Web-Studio Team

NPTEL Co-ordinators

Prof. Andrew Thangaraj
Prof. Prathap Haridoss



IIT Madras Production

Funded by
Department of Higher Education

Ministry of Human Resource Development
Government of India

www.nptel.ac.in

Copyright Reserved

http://www.nptel.ac.in/

