
Okay so I  am just formally describing what is discretization, but we have
already  discussed  this.   It's  essentially  the  procedure  of  obtaining  an
equivalent discrete time system for a given continuous time system.  So if
you are using an Euler's method for discretization, that is also discretization.
If you are using some other Runge Kutta method for discretization, that is
also a discretization, doesn’t matter.
(Refer Slide Time: 00:32)

You have to be very clear in every discretization method, what is the error
that you are going to incur.  Okay, that is one of the things that you should
be  aware  of  in  any  discretization  methods.   And  secondly  of  course  the
mapping,  when  you  discretize  a  continuous  time  process,  how  do  the
parameters of the continuous time system map to the discrete… discretized
system.  Here in this setup, the mapping, that is in this setup meaning in this
kind of a setup here, the mapping or the discretization essentially depends
on this D to A converter, because sampling does not really cause any kind of
approximation.  What does sampling do, it just gets you the value at that
instant in time, that’s all.  There is a continuous time signal, it just gets you
the value.   It  is  a  D to A converter,  that  is  bringing in  some kind of  an
approximation.  Therefore the kind of discretization or the kind of mapping
that you are going to end-up with, heavily rests on this D to A converter and



you will see that later on when we look at the equations, alright.  So that is
something to remember.  Now generally when you look at D to A converters,
this… you will  come across  what  are known as hold devices,  the D to A
stands for digital to analogue.  There are many hold devices, why do we call
this hold devices, because they rest on some kind of  interpolation,  which
hold on to some value of the signal, until the next instant arrives.  So let us
look at a very simple hold device, which is what we will use throughout the
course,  and  which  is  what  is  used  in  industrial  operations,  most  of  the
industrial operations use this hold device or the instrumentation.  What is
this hold device, this is called a zero order hold device.  By its very name,
what it is doing is it is holding on to the signal value, until the next value
arrives,  that  is  how it  constructs  an  approximation.   So  you  look  at  the
schematic at the bottom and what the ZOX receives is a discrete time signal,
which of course is defined only at specific instance and time, we will assume
uniform sampling.  We will  not worry about the irregular sampling, but of
course ZOH can work with both.  The output of ZOH is a continuous time
signal.  How has this continuous time signal been constructed by holding to
the value… previous value, until  the new value arrives.  Mathematically I
have given you the definition, U of P is = to U of K times TS for all times
between KTS and K+1TS.  So if you look at it… this equation carefully, the
left  hand side for  the interval  of  time is  a strict  inequality  and the right
hospital side is a simple inequality, right.  What does this tell you that there
is some Ipsilon time you can say delta… delta time involved in switching over
to the new value.  What this says is until K+1 TS U of T will hold on to the
value  at  KTS  and  note  is  in  notational  difference  here  when  we  talk  of
absolute time, we will  use the parenthesis, when we talk of the sampling
instant we use the square brackets, right.  So what this means is in the next
instant that is from K+1 TS to K+2 TS, after K an Ipsilon time or a delta time
after K+1 TS it will switch over to the U K+1 and remain at that value until
K+2 TS.  This should give you an idea as to why ZOH can cause a delay.  This
straight away doesn’t give you the reason, but it does give you some idea as
to why we experience a unit  delay in  all  sample data systems, what are
sample data systems, the one that you have seen earlier.  This is called a
sampled data system, consisting of a hold device and a sampler.  All sample
data systems that use a ZOH will result in a unit delay and we will prove that
very soon.  Okay so this is the mathematical distribution of a ZOH.  Obviously
what  the  ZOH  is  doing  is  constructing  an  approximate  continuous  time
signal, right.  If I give this discrete time signal, there are infinite number of
continuous time functions that will satisfy this UK of the infinite, it is picking
one of them, the simplest one.  Clearly it results in a error.
(Refer Slide Time: 05:48)



That is I can start with some U of T sample it and give you UK, ZOH will give
me this.  Whatever, the output of ZOH is need not match with the U of T, that
I begin with.  So obviously there is going to be some error and you can show
that this error is bounded, it's bounded above by a certain quantity, H here
corresponds to the sampling interval and F is a general function that you are
looking at, that is general continuous time function that you are looking at.
So the error depends on the maximum value of the derivative of U of T or F
of T, times of course the sampling interval.  So what does it tell you for a
given function, if I keep increasing the sampling interval what happens to the
error, or at least the bound, upper bound, it keeps growing naturally, right.
As I keep increasing the sampling interval, the error bound keeps increasing,
so you should expect the error also to increase.
(Refer Slide Time: 06:59)



Obviously the reverse is also, converse is also true, as I keep decreasing the
sampling interval, I will make lesser and lesser error.  Now surprisingly, there
is a class of signals for which this error in approximation is 0.  Do you know
what is that signal?  For which class of signals, the ZOH gives you exact
reconstruction?  Sorry, which

(inaudible)

No I am referring to which continuous time signal for which the ZOH will give
you correct recovery.  So I start with the continuous time signal, I sample,
and I give it to ZOH, it will recover exactly that, the step signal, right.  Of
course  you  can  also  say  in  the  continuous  time  it  could  be  piecewise
constant and so on, that’s fine, but when you look at the general class of
elementary signals during it, for a step signal the ZOH gives you the correct
recovery.  In other words, the discrete time step translates to a continuous
time step, right, because of the ZOH operation.  I can start with a continuous
time step, sample it, give it to ZOH, it will exactly recover that fully.  You can
also say I can start with a piecewise constant signal, right and then give it to
ZOH, it will exactly recover, but it will only exactly recover, if the original
signal  is  piecewise constant  over that sampling interval.   If  I  change the



sampling interval, the recovery is lost, right.  Whereas for the step, the error
is 0, regardless of the sampling interval.  That is the only signal for which
regardless  of  the  sampling  interval,  the  ZOH  will  exactly  recover  the
continuous time signal and therefore the ZOH discretizations are called step
discretizations, step in variant… sorry.. step invariant discretization.  We will
see that shortly.  You understand, every hold device will give you an error
and it  will  be exact  for  some situations.   ZOH gives  you an error  in  the
approximation, but it  is  exact for step like signals.  And that is  why ZOH
based discretizations are called step invariant discretizations.

Now you can also think of a first order hold or a second order hold and so on
that 0 order, essentially refers to the order of the polynomial that you are
fitting between two instants, right.
(Refer Slide Time: 09:48)

You are fitting a flat line, it’s a 0th order degree kind of polynomial.  If you
were  to  fit  a  first  order  polynomial,  then here  between two instants  you
would see a straight line, but then there is a problem there.  I need to know
the future sample to be able to construct that.  You can say no I can rely on
the previous one and do an extrapolation,  that  will  introduce an artificial
delay.  So to avoid all this difficulties, people just work with ZOH, because it



is a more simple and practically implementable ones, that is why you will see
ZOH  being  very  popular,  right.   The  first  order  hold  gives  you  better
approximation, agreed.
(Refer Slide Time: 10:30)

but it is non causal.  I need a future sample, future observation, and if I want
to work around the non causality part, then I have to introduce a delay.  So
we will not look at FOH.  Now let's understand very quickly, the rest of it is
math and it's very straight forward.  This math has no complications at all.
Again this  is  another kind of  discretization where you know that  you are
working with a ZOH.  Our goal is to arrive at G of Z starting with G of S, you
can say that way or you can say that I have a contiguous time state space
model and I would like to arrive at a discrete time state space model.  For a
specified sampling interval, given that you are going to use the ZOH.  Why
did I retain C and D as they are, and I only changed the subscripts on A and
B.

(Inaudible)

Correct, so C and D are part of the output equation, which is algebraic and an
algebraic equation in time holds at all times.  This is a state space model in



discrete time.  This is a state space model in continuous time, right.  What
does this state space model do, it relates states at two successive sampling
instants, correct.  So if you look at the state space equation, you would have
XK + 1 = AD XK + BD UK, this is for this model, whereas for this model, you
would  see  an  OD,  first  order  OD,  right,  couple  first  order  ODs.   The
continuous  time  state  space  model  tells  me,  gives  me  the  evaluation
equation in the form of ODs, the discrete time state space model tells me
how states at two successive instants are related.  Now the question is given
the continuous time state space model, how do I derive a relation between
two sampling states at two successive sampling instants.  It's very simple.
You start with a continuous time state space model.
(Refer Slide Time: 13:14)

What do we want, we want the relation between states at two successive
instants in time, which means I have to write, let's say, let's look at this here.
This… this is an OD, suppose I give you a first order system, it's going to be a
single state equation.  And I ask you from this OD that I have given you,
derive a relation between the states at two instants in time.  How do you…
how do you proceed?  What is the first step?  Suppose I ask you, what is the
solution to the OD, you can do that, right at least you know how to do it.  I
am not going to ask you to do it right now, but you know that there exist a



way in which you can write a solution.  What will that solution get you?  It will
tell  you what is the value of the state at any time D, starting from some
initial condition and for an input profile.  Given that solution, can you derive
this relation?  How will you do that?  Well write your solution at two different
instants in time and then connect them.  It's as simple as that.  There is no
complication there at all, if you are thinking there is a complication, there is
none.  And we will go through that exercise now.  So given a continuous time
state space mode and straight away writing the solution to the state space
model, that relates the states at two different ins… the instants.  They need
not be regularly spaced. At one time T1 you have state X at T1, and another
time T2, you have state X ray at T2.  So given this continuous time state
space model, let's look at the equation, state equation alone 2A, it's very
easy to derive this solution.  You will find this solution everywhere and you
should be able to recall this from your calculus, courses on calculus.  You can
either  use  Laplace  transform  method  or  use  the  standard  OD  solution
method to write this solution.  What is this equation telling me, it is telling
me how X at T2 is related to is X at T1.
(Refer Slide Time: 16:48)

Suppose I am solving an initial condition problem, then T1 is 0, T2 is some
time D, right.  Suppose I am given some other condition, not initial condition,



boundary condition, whatever, some other condition, this solution is useful.
So it’s a very generic solution.  How do I use this to arrive at the discrete
time state equation.  This should be easy, Taylor's series, why?  Why do you
bring in Taylor here.  We don’t need any Taylor, carpenter, no one.

(inaudible)

Well you want to be more correct.  T1 is K times TS, because T1 is absolute
time and T2 is K+1 TS, that’s all.  You don’t have to really Taylor anything
here.  So T2 is, we said T2 as K+1 TS and T1 as KTS, because that is what we
want, that’s the relation that we want.  So we do that and substitute for T2
and T1 in this equation, right.  What do you get.  Straight away you get AD.
Can you pick AD from that equation, A to the…

(inaudible)

That’s it, that’s your AD.  So we have straight away mapped the state, the
transition matrix for the continuous time process to the transition matrix for
the discrete time process.  A maps to E to the ATS, what is TS, it’s a sampling
interval.  And don’t think that this E to the TS is your regular exponential, it's
called matrix exponential and I will talk about that shortly, either today or
tomorrow.  But let us complete the picture now, we want BD, that’s not so
obvious from this equation, right, because the second expression here is not
in  this  form.   You are  able  to… you are able  to  pick  up… point  out  AD,
because the first term is in the standard form.  Now what do we do.  Now
assume 0 out and bring in the 0th hold, that is why I said until this point you
have  not  made  any  approximation  at  all.   this  solution  is  valid  for  all
processes, continuous time process, continues time process.  Now depending
on  the  hold  U  of  Tau,  which  is  Tau  is  a  dummy  variable,  between  two
sampling instants can change.  0 order hold is like a "laddu" it’s a sweet.
(Refer Slide Time: 18:45)



You know, It's so simple, it simply says, U of Tau is a constant between two
sampling intervals… to sampling instants, which means it falls… it falls out of
the integral.  What is that value, that is equal to U… U at KTS or UK, right.  So
we just bring that out of the integral and quickly simply that integral to arrive
at P, what a beauty, right.  It's very simple.  Straight now I have expressions
for AD and BD.  So first I compute AD and then I can compute BD in an easy
manner.  Yes there is an inverse of A involved and if A is singular, you may
think there is a problem, but you can actually show that there is no problem,
okay.  If A is singular, A inverse may not exist is a concern, right, but that’s
not an issue.  We will show that, in fact you can see that it's not an issue by
first understanding this matrix exponential.  How is this matrix exponential
defined?  The same way as a regular exponential is defined.  That is now we
bring in Taylor, okay.  Now the Taylor's series, this will come in.
(Refer Slide Time: 20:11)



So let's define, this is generally now giving you the mapping under ZOH, you
have to remember.  If the hold device is changed, you have to go back to this
equation, AD remains the same.  The B changes, right.  So what is this matrix
exponential,  it  is  this  matrix  exponential,  it  is  this  infinitely  long  Taylor's
series expansion.  Now we invoke Taylor and write it as I+AT+A square T
square/2  factorial  and  so  on.   Generally  the  misconception  is,  matrix
exponential is simply the exponential of the elements of that matrix, that is
not, right.  The other… the other possibility for us to think of is, I write A
times T, A is a matrix and I write… So if A was a square matrix, then I would
have AT as A11T, A12T, let's say a second order system, A21 times T and
A22T.  And we may think this exponential E to the this could be simply as A
to the A11T, E to the… sorry… E to the A11T, E to the A12T, and so on.
Unfortunately this is wrong.
(Refer Slide Time: 21:35)



When is it  true, only for diagonal matrixes, okay, so matrix… in fact now
computing this matrix exponential, I  am always reminded of this fantastic
article by Cleve Moler,  I don’t know how many of you have heard of Cleve
Moler, have you any, has any one of you heard of Cleve Moler?  Well he is a
founder of Mathworks, he is the maker of MATLAB, and he is the architect of
MATLAB.  And he is a fantastic mathematician as well.  There was an article
by him long ago on 19 dubious way of computing matrix expansion.  It’s a
very nice article, you should read that.  We will not learn those 19 dubious
ways,  we  will  only  learn  two  correct  ways  of  computing  the  matrix
exponential.  Because for them, it all… it's all about computing this in as
précised, numerically précised manner as possible, and that depends on the
approach that you do.  So how do you… as at least by hand compute matrix
exponential, right.  The rest is done by MATLAB.  You may say, well when
MATLAB is there, why should I worry, but MATLAB is not going to be there all
the time with you.  You should also be comfortable calculating by hand.  So
one  of  the  ways  of  computing  this  matrix  exponential  is  through  the
Eigenvalue  decomposition  method,  which  says  that  E  to  the  AT  can  be
written as a product of V times E to the Lambda T times V inverse.  What is
this big V, this big V is a matrix of Eigen vectors of A, remember A is a square
matrix.  So you can calculate Eigen values.  This Lambda, big Lambda is a



diagonal  matrix of  Eigen values of  A and basically  you can arrive at this
result by starting with this Taylor series expansion and writing the fact that V
inverse AV is Lambda, okay.  So you can either multiply… you can multiply,
pre-multiply, and post multiply with V inverse and V on both sides here and
get to this identify here or you can write A itself as V times Lambda times V
inverse, that is your standard Eigen value decomposition.  So in place of A on
the right hand side of equation 7, wherever you find A, plug in V Lambda V
inverse.  When you do that you will see the V… V falls out to the… as a left
factor  and V inverse  falls  out  as  a  right  factor  and you will  be ending…
ending up with I+Lambda T+Lambda square T square/2 factorial and so on,
which is E to the Lambda T.  The difference between E to the AT and E to the
Lambda T is, what is it?  E to the Lambda T is very easy to compute, it's just
a elements… exponential of the diagonal elements that is the advantage.
That’s it.
(Refer Slide Time: 24:52)

So that is one method, the other method is the so called Laplace transform
method,  which  is  also  very  eelegant  way  of  computing  the  matrix
exponential.  Here you make use of this identity from Laplace transforms,
which  says  that  the  matrix  exponential  is  the  inverse  Laplace  of  SI  –  A
inverse.  You can easily verify this for a scalar.  If A is a scalar, we know that



Laplace transform of E to the AT is 1 over SI minus A… S minus A.  So this
result is an extension to the matrix case.
(Refer Slide Time: 25:21).

How do I make use of this result?  The idea is that first I go into the… I will
show you in this example and then we will conclude today's class and then
we will  complete discretization tomorrow.  So let's take this second order
state space model and I will show you how the Laplace transform method
works.  Discretized with a ZOH, the sampling interval has to be specified.
(Refer Slide Time: 25:58)



Let us look at the state space model.  I am not going to go through the Eigen
value method, because that’s very easy.  You can actually take these values
and do your calculations in MATLAB.  Let's look at the Laplace transform
method, which is elegant.  All you do is, given A construct SI – A inverse.  For
2/2 its fairly easy.  So it's all symbolic, here SI minus A inverse, the only thing
that you have to remember is how to compute the inverse of a 2 by 2 matrix,
which I suppose you all should know, else we have to recheck your admission
criteria.  Alright, so that is your inverse, now the nice thing about taking the
Laplace inverse of a matrix is you can take the Laplace inverse of individual
elements of a matrix and that is why it's advantageous.  Earlier in the Eigen
value method, the advantage was that you are going to deal with E to the
Lambda T, where Lambda is a diagonal and you could take the exponential of
the elements.  Here the advantage is, you can take the Laplace inverse of
the individual elements and that you can do, you can look up any standard
table and come up with the inverse Laplace of each of this elements.  That's
it, straight away you have E to the AT.  And since you are given TS, plug in for
TS here and get your AD and BD, alright.  In this case, it so happens that the
structure of A is preserved, but you have to think, whether the structure, if A
has… that is the continuous time state space model has a certain structure,



will AD also retain the same structure.  Think about it and you can answer
me tomorrow.
(Refer Slide Time: 27:55)

One of the things that we can straight away infer is the Eigen values of AD,
because now I  am very interested in stability preservation.   My sampling
should… should not spoil stability.  If the continuous time process is stable,
the discrete time… discretized process should also be stable.  For this I need
to know Eigen value mapping, and Eigenvalue mapping theorem is that if
the… if Lambda's are the Eigen values of the continuous time LTI system,
then the Lambda's of AD are simply E to the Lambda TS.  This is… the proof
can be obtained by using, what is known as the Kelly Hamilton Theorem.
What is Kelly Hamilton Theorem?  Satisfies its own characteristic equation.
So  using  that  you  can  prove  this  result  that  the  Eigen  values  of  the
continuous time system map to… we set out to map models.
(Refer Slide Time: 28:58)



But now we realize if Lambda I is an Eigen value here, E to the Lambda I TS is
the pole here.
(Refer Slide Time: 29:05)



So do you think stability is preserved?  Because continuous time systems are
stable, if the Eigen values are strictly negative, at least the real part of the
Eigen value should be in the left off plane, that… they should be negative.
And for discrete time systems, they should be within the unit circle, right.  So
that is satisfied, therefore stability is preserved in this discretization.  If the
continuous  time  process  is  stable,  your  discretized  process  cannot  go
unstable, alright, but you should realize that the pole now in the discrete
time  depends  on  two  things,  the  pole  in  the  continuous  time  and  the
sampling interval.  If the sampling interval is very small, what does it mean
and sampling very fast, what happens to the pole in the discrete time, close
to the unit circle, is it good?  Because we are moving towards the border, line
of control, and that can cause a lot of issues in identification.  When there is
a pole that is very close to the unit circle, small errors in your estimation can
actually end-up with an estimate outside the unit circle, that's why it is not
good to sample very fast.  We are talking of relative only, when you say fast,
it  is  a  product  that  we  are  looking  at,  Lambda  I  times  TS.   So  if  TS  is
extremely small, relative to Lambda I, you are putting yourself on the border
and you know border.  And you know border, usually it is always busy at
firing,  so  you  don’t  want  to  be  really  a  part  of  that  firing.   So  see how
beautifully  this  mapping  has  allowed  us  to  quickly  comment  on  what



sampling can do to identification to your system and so on.  Tomorrow when
we meet, we will learn another way of discretizing the system, but there we
will be given a transfer function, can I then arrive at the transfer function
without going to the state space route.  I can always, for a given transfer
function, I can convert the state space and then use this result, and then go
to the transfer function,  that’s  a very circuitous road.  Directly given the
transfer function of the continuous time system, can I arrive at the discrete
time transfer  function and then discuss  some sampling aspects  and then
move on to very quickly the sampling theorem, that way we would have
completed our discussion on discretization.


