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Okay, so let's continue with our lecture. If you recall we were talking about frequency response 
functions and today we'll kind of close the curtains temporarily on that at least, for deterministic 
processes. One definition of FRF is that we have seen is that it is a discrete time Fourier transform of 
the impulse response sequence. Which straightaway tells us that the notion of frequency response 
function is meaningful and exists only for stable LTA systems. The alternative definition that I talked 
about in the last few minutes of the previous lecture is that the FRF can also be defined, is also the 
ratio of the DTFT of the output and the input and the way you arrive at this is by starting with the 
convolution equation. 

(Refer Slide Time: 1:11)

So you have the convolution equation and you take the discrete time Fourier transform on both sides 
of this equation f denotes the discrete time Fourier transform that is here on the left hand side, you 
would have sigma yk, e to the minus j omega k. K running for now, we can say from minus infinity to 
infinity because we are doing a theoretical analysis that gives us y of omega as per our notation. On 
the right hand side, you just make use of the properties of the discrete time for time Fourier transform.
One of the standard properties of the DTFT is that the DTFT of convolution of two sequences. So you
have two sequences there, an impulse response sequence and an input sequence. DTFT of the 
convolution is a product of the respective Fourier transforms. I don't keep saying discrete time, you 
have to understand we are referring to discrete time Fourier transforms. So we end up with g of 
omega. But it's good to write g of minus e to the j omega. There is a reason why I prefer to write g of 
e to the minus j Omega. Later on we may condense it to g of omega and that reason will become 
apparent when we talk of the Z transforms representation. 

Okay, so this gives us the definition that you see on the screen, and once again here, we have assumed
that the DTFT is exist of the respective sequences, right? And implicitly it is understood therefore that
it is defined only for stable systems or systems which in which the transients died on. Okay. So all of 
this is theoretical definition. This is an alternative way of arriving at the frequency response function. 
Every definition such as this or any model representation that we have seen, like convolution equation
form or the step response form or this form. All of these allow us to identify the system in different 



ways. That is one viewpoint that one can take of these different models that we have, right? Because 
although theoretically they have-- all they are all equivalent. Practically you may have different kinds 
of data with you. In many situations for example, this definition is amenable in many applications 
because directly you may have the Fourier transform of the output and input available to you from the
instrument that you have. 

Okay, and the other way of looking at it is that in many vibration applications, on mechanical 
engineering applications, and if perhaps, a few aerospace applications. You may excite the system 
only at some specific frequencies in which case again you can use this kind of definition to arrive at g 
of e to the g omega. The other definition that we had is as I've mentioned is that g of e to the j omega 
is the Fourier transform of the impulsive response, right. So now you have to ask, which definition is 
more amenable to identification, although theoretically they are one in the same. What do you think? 
Which is more identification friendly? So let us say that this is second definition, this is first 
definition, one or two? Two, because typically we have input, output data with us. I can directly 
compute the DTFT. We have not yet come to that. We'll talk about that now, the next. And then arrive 
at an estimate of the FRF.

The first definition is amenable when you have the impulse response with you. You could also argue 
this way from the input, output data. First I'll estimate the impulse response coefficiency, right. I'm I 
right? We have seen already-- although we have not learnt how to do it but there are algorithms 
available to do that for us. I could estimate g the coefficients and then indirectly estimate FRF. The 
question that you should ask in your minds is, whether both will be of same quality? We may not 
answer that completely today. But you should raise this question in your minds, whether applying this 
definition here will give me a better estimate than this one which is being estimated in a indirect way. 
First I estimate f and then I estimate the FRF. What do you think? At least, preliminary thoughts. It 
can either way. We don't have-- at least, you may not have learnt enough material to concretely argue 
but let us hear out some thoughts on that. The errors may carry forward in a different way. Okay, 
Good. Good thinking. Any other thoughts? You can think of. Good. That's one way of looking at it. 
Any other thoughts on this? What do you think? Ultimately when you estimate. Remember, with 
every estimate that you report it has to be accompanied by an error assessment, an average error 
assessment. So you have to also look at how easily you can compute the errors, average errors in your 
estimates. If you look at-- it if you go by this definition what is a source of error in this definition? 

When you use it in practice? Can you think of what are the sources of errors? Because that will also 
now pay way for the next part of our discussion today. Suppose, I want to use this definition and 
practice because I'm going to be given input, output data. Do you think first of all, I can estimate FRF 
accurately using that definition? Let's go step by step. Let's take some baby steps. Do you think that 
you can estimate FRF accurately? Our goal is now the estimate, right? In identification is all about 
estimating g and the noise model from input, output data. It's all about that and it will always be about
that. It's only g in different forms we're estimating. One is impulse response, other is step response, 
other is FRF and so on. With respect to FRF can we estimate it accurately? Why there is a silence? 

You refuse to answer on February 7th or something like that, I mean what is it? Do you understand the
question? Very simple. Can I estimate FRF accurately, given input, output data and practice using this 
definition? It can be yes or no. That's all. Why? Good. Good. Okay. So you can have measurements 
errors. What else?

Sorry. Finite sample length, good. Where is finite sample length coming to picture? I'm not sampling 
in frequency anywhere. Where? Did I talk about sampling in frequency here?



By taking Fourier transform.

What did I do? 

We have to work with limited samples. 

Okay. What can that do? Good. So to complete your answer this y of omega that you see on the board,
what is a definition? It is based on infinitely long output sequence which I do not have. How I'm I 
going to use this definition in practice? I have to evaluate this given output data. I have to evaluate 
this given input data. But can I use this formula as is? What do you think? [11:09 inaudible] Can I use 
it as is? No. Unless you think it's a very obvious question that I shouldn't be asking. You can answer it
quickly. What is the difficulty, I have a finite amount of data only. The output that I have is only about
100, 200 whatever but finite number of observations.

Whereas the theoretical definition assumes you have infinite data with you. So the point is, when I 
want to use this definition, the first thing, the first problem that I encounter is that I have finite data. 
Right? If I were to write the issues, finite data is an issue. If I give you infinite data will be able to 
estimate accurately? Your FRF at all omega. At any arbitrary omega? Yes. but at all Omega? There is 
difference, right? At a specific omega and at all omega. You understand the finite data problem that I 
cannot use this expression as is but I would still like to use this because this is the definition. We'll 
have to figure a way out of using finite data and still working with this definition. We'll come to that. 
So we have identified it as a source of problem or error, potential error. 

The second question is can I compute this FRF? Can I estimate this FRF? Even if I were to give you 
very long data which you can consider is practically infinite. Let's say, I give you a million 
observations, will you be able to compute or estimate, FRF at all omega? All Omega. What is a range 
or which I would compute FRF, range of frequencies? Sorry. Yeah, minus pi to pi or 0 to w pi. We 
have spoken about this last class, right? So we will only worry in this interval. Notice that there's a 
square bracket here and there's a parenthesis here.

Which means, you would compute at one of the endpoints. You don't have to compute at both 
endpoints. Okay? So can you compute FRF at all Omega? Yes or no? Why? Because it's a continuum. 
Correct? That cannot be a source of error. But that is also a practical limitation. This we definitely 
expect to get results and some error in the estimate. Even if there is no noise. Suppose, that I've given 
you the cleanest measurement that you can assume practically that it's free of measurement error. Still 
this can introduce an error in the estimate of FRF because I may have to truncate this summation or I 
have to do something, right. I have to construct. I have to at least compromise on some kind of 
approximation. 

So the second issue is, can only compute and at discrete domain or on a grid. Grid of frequencies. As I
said, the second aspect doesn't lead to necessarily any error, it's only our inability to compute on a 
continuum that doesn't result any error necessarily. It is the first one finite data that can result in error. 
And of course, as one of you have already mentioned, you have measurement error, right. So these are
the three issues I have to worry about when using this definition in practice. Did we worry on similar 
lines with respect to impulsive response as well?

Did we modify the convolution equation accordingly? We did, right? We said, the convolution 
equation assumes infinitely-- infinite number of IR coefficients I will not be able to estimate. So there 
are two parts available, either truncate the convolution model. How do we estimate, we are not 
discussing but we potentially identified a source of a problem of using that in identification. See, you 



have to understand every class in the big picture of system identification. At the end of every class it's 
a good habit for you to ask yourself, where does today's class stand in the big picture of system 
identification? And at this moment we are in the small subfield of models and trying to understand, 
what models are available? What mathematical descriptions can be given, so that when I am presented
with data I can choose a particular mathematical form to identify the system? 

But we don't want to study. Okay, these are the models and then this is estimation theory everything 
we want to nick well. That is why any model that we study we will ask this question ultimately when I
use this model, what are the potential difficulties I can face when I actually sit down to identify the 
process. And that's what we did with the convolution from and we said, infinite unknowns cannot be 
estimated. So we will either choose to truncate arbitrarily well, with a reason, good reason or we will 
parameters g to identify a different kind of model which we have not yet spoken off, we'll speak about
that as well. Here when we are studying their frequency response functions again we are asking. 
Okay, I have thought to the definition of FRF. Yet, another way of describing a LTA system. But when
you actually sit to identify, what are the problems you can face? And we have listed the three 
difficulties. Let us keep the measurement errors aside for now, because we are still talking of things in
the deterministic world.

In the deterministic world the first to apply, finite data and inability to compute or a continuum of 
omega. For this reason, we introduce what is known as the-- this is not new. It is not just that 
somebody discovered in identification, it has been earlier thought of in signal processing long, long 
ago. And obviously because of the strong connections between signal processing and system 
identification, you run into similar problems as well. So suppose, I'm not looking at system 
identification. I'm only looking at Fourier analysis, frequency domain analysis of a signal. The same 
story will apply. Suppose, I was only given some signal y.

Forget about all of this and I want to compute the Fourier transform because once I compute the 
Fourier transform I can construct power spectrum, figure out what frequencies are present and so on. 
Even in such an analysis, you will be presented with these two issues. Right. Forget about input, 
output. I'm just given some outputs, I'm response of a system. Like, I showed you for the liquid level 
case study, powered spectral density. How did I compute a power spectral density? I was only given 
finite data, right? I did compute Fourier Transform but went-- did I go by this definition? Not 
necessarily as is but some modifications of equate. 


