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Okay. Very good morning. Sorry for the short delay. So what we'll do is spend the first few minutes in 
discussing summarizing what we have learned from the case study and then also briefly spend a few 
minutes on showing how a different kind of a model could have been built, that is a state space model. So 
if you recall, we have identified an output at a model for the liquid level case study and you've seen this 
model before, the slide before, where the deterministic part has been model as a first order. And as far as a
stochastic part is concerned we have assumed, we have modeled it as white noise which means there is no
predictability.

(Refer Slide Time: 01:00)

I have still not disclosed to you what kind of a process I have simulated. I've only told you that I have 
simulated a liquid level case study. But I have not told you what kind of stochastic component I have 
added into the simulation. I'll come to that very quickly. 

Normally, it's conventional to represent these difference equation models by what are known as transfer 
function models. We will talk about the transfer function models in the lectures to come. 

(Refer Slide Time: 01:32)



The advantage of representing a different equation form in transfer function form is only for mostly 
convenience but there are other implications. I mean you could do the same analysis to let me not tell you 
that it's only convenience, there is a lot more to it. One is the analysis of stability which we will learn later
on. The moment I write a difference equation form in a transfer function from, one of the biggest 
advantageous is that I can do a stability analysis. We will talk about stability today. The other advantage is
that by computing what are known as poles of that function. Some of you may be familiar with this 
terminology. If not of course, we will learn later on. By looking at the poles of the system, we can 
comment on what kind of response one can expect, whether you will see anoscillatory response or a 
damped response and so on. In a typical control course you learn this but for continuous time systems, it's 
the same theory applies to discrete time systems as well. 

So what we have done here is we have taken the difference equation form that we had written for the 
liquid level process and we have called that and written it into the form of a transfer function and we 
denoted this by G. 
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We have already introduced that notation earlier. And the stochastic part has been modeled as a white 
noise being passed through H. Later on, we will come across a very important terminology. We have 
already used that term, known as filter. So you can also now imagine that the stochastic component has 
been modeled as white noise passing through a filter. At a later stage we'll understand, what is the 
consequence of assuming that under what conditions we can assume stochastic component being 
represented as white noise passing through a filter and so on. For now just remember that these are 
transfer functions. The filtering perspective will become clearer when we talk of frequency response 
functions and so on. So from the identified model it's clear that this G of q inverse which we often call as 
plant model is given here in the equation 11, as you can see. What all we have done is that, in this 
difference equation form we have introduced what is known as a shift operator. Again, I'll talk about that a
bit later but it's a very straight forward operator.
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 The role of a shift operator is to simply shift an observation to one observation in the past. Right. So it's q
inverse is an operator. It's not a variable. You have to make it very clear in your minds. Whenever q 
inverse is used, it should be treated as an operator and it operates on observations or signals and so on. 

So if you look at the difference equation here, in (9b), I can replace x of k minus 1 with q inverse x k and 
u at k minus 1 with q inverse u k. Right. And of course, there is also this forward shift operator, q inverse 
is called as a backwards shift operator. 
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You have the forward shift operator analogously define which shifts the observation to one observation in 
future. Why do we introduce a shift operator? Again, because then we can write, we can represent this 
difference equation in a compact manner to begin with. The q inverse is different from what you must 
have encountered in some of your courses as z inverse.You know, in some of the courses you must have 
learnt, some of you, where you deal with z inverse, and z inverse is a variable,whereas q inverse is an 
operator, z inverse is a complex variable. We will also talk about that at a later stage. Nevertheless, now 
coming back here, the difference equation that you see in (9b), can be now rewritten as what we call as a 
transfer function operator form to be more precise. How do you do that? It's very simple. 
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Go back and hear as I said, replace x of k minus 1 with q inverse x k. And u k minus 1 with q inverse u k. 
And then collect all the terms, like terms together so that you can write the difference equation form as 1 
plus a1 q inverse x k equals b1 q inverse u k, from where the transfer function operator is arrived at. So 
now the transfer function operator here is a rational polynomial but polynomial in operators. Not 
polynomial in variables. Of course, there is a calculus associated with this operators, with this transfer 
function operators, and rational polynomials and so on. We don't have to go deep into it. For us, the basic 
understanding suffices. One of the things that you should remember is not to cancel out if you encounter 
at any stage in future, at any time in future, common factors between the numerator and denominator. 
You're not supposed to cancel them out because they are not variables. They are not polynomials and 
variables, there are polynomials in operators. They have a meaning. Okay. So now it must be clear as to 
how I have arrived at equation11 on the, that you see on the slide. 

And of course, I've also indicated the errors in the parameter estimates there. Instead of a1 we have a1 hat
and likewise for b1 as well. And this is a notation, this is a representation that one has to get used to as 
much as possible because you will see this almost in every other class. 
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And the models that you would develop would be reported preferably in this fashion. 

Now coming to the noise models, since we have assumed v k to be white, in other words, h to be 1, the h 
of q inverse simply is 1, that's it. For this liquid level case study, h of q inverse happens to be 1. Although,
I don't say that here but it's pretty obvious from what we have modeled. We say, now by looking at the 
transfer function operator, this is not transfer function. You would call something as a transfer function, if 
you would write it as a function of variables. Since you are writing this as a function of operators, clearly 
we would call this as transfer function operators. Later on when we learn what a transfer function is, you 
will notice that the transfer function exactly, I mean, it looks identical, except that in place of q inverse 
you would see z inverse. But there are subtle differences that I'll point out later on, right. Okay.

So by looking at the transfer function also one can say that this is a first order system. And how does one 
do that by looking at the roots of the denominator and so on. If you are familiar with differential 
equations, you must have heard or you can even recall the terminology called characteristic equation. 
Right. And in characteristic-- in deriving a characteristic equation you replace the, essentially differential 
operator with some variable, with some, you know operator d.

(Refer Time Slide: 09:46)

 That would be the case for differential equations, for difference equations, we work with the shift 
operators. That's the prime difference. But otherwise, the rest of the concepts pretty much apply. There we
talk of roots of characteristic equation, here also we can talk of roots of characteristicquestion. The order 



of the characteristic equation there would tell you what is the order of the ODE, here also the order of the 
difference equation is determined by looking at the characteristic equation. So pretty much all concepts 
apply. Of course, we will talk about this a bit more in detail later on. I just wanted you to get a preview of 
this transfer function and transfer function operator representation. Now the other thing that we talked 
about in the last class is that the model that we have identified is in very close agreement with the model 
that I would have derived theoretically beginning with the continuous time non-linear ODE, I would take 
the continuous time non-linear ODE that I can write for the liquid level system linearize it around the 
operating point. When I conducted the-- when I excited the system with the PRBS, I took the system to a 
steady state, If you remember, I had said that. So that becomes the operating point for your linearization. 
The linearized model would still be in continuous time. You'll have to further discretize it, so as to 
compare the model that you have identified because the model that we have identified is a discrete time 
model. You cannot directly compare with the continuous time model. 

How to discretizeor linear continuous time model is something that we will again learn a bit later. So you 
can see that this example if you just to follow each thread coming out of this example this case study.
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You would be led to different concepts and system identification and that's exactly what I have also talked
about towards the end of this case study in my book. So if you have taken a look at the book, go to the 
end of chapter 2, and you would see that I have raised a number of questions. I am not going to talk of all 
of that but you should now be clear that if you follow one thread in this case study, you would be led to 
one concept and another thread would lead to another concept and so on. That's why this case study is 
very useful in many ways. Now there are two more questions that I want to ask you. And then discuss that
before I move on to the state space model, then we'll get onto the theory. Why do you think the output 
error model worked well as compared to the equation error model? We know by now for this case study 
that the equation error model structure did not fetches a satisfactory deterministic model. Whereas the 
output error model assumption or the structure led us to a satisfactory deterministic model. Why do you 
think it happened that way? Any ideas? Sorry. 

She is going to the root cause. Unfortunately that is need not be the root cause. I mean, I could have 
actually added some other kind of noise, not white noise, correlated noise and still the output error model 
structure as we shall learn again, later on theoretical you see, everything I'm saying, we can learn later but
it's true for under open loop conditions regardless of the nature of the noise that corrupts your data, 
whether it is white or colored an output error model structure is guaranteed to give you to fetch to the best
deterministic model provided you have, guess the order right and so on. 

Right.Whereas that is not necessarily true of equation error models. We'll learn the theoretical reasons, 
why, on why this is true later on. But as of now, what do you think has caused this issue? I mean, I mean, 
has caused this kind of situation where the equation error model structure has failed for this case study. 

No. But output-- so, no output error model also has the same. They're both in the linear framework, which
non-linearity are you talking about?

That's different. So you have to be clear, when you say, non-linearity. You're talking of non-linearity of 
predictors. Okay. That's a slightly advanced thing that I would say and it has a lot more subtle details, 
we'll not get into that. The important thing to observe first is a similarity between these two. That is when 
I work with the output error and equation error models. I have assumed the same deterministic model. 
Right, in the sense, we used the same first order. The prime difference was in the noise, right. The 
assumptions that we made about noise. That is one aspect of it but the more important aspect of it is that--
you can, it should not give you the impression that you should always assume the noise to be white 
regardless of the situation and you will get good model. Yes, you will get a good deterministic model but 
it turn out that your noise dynamics are not modeled properly. The more important reason is in fact that 
we have tied together the parameterization of the plant and noise models. As I said, last class, in the last 
class symbolically I showed you that your g and h are like your left and right hand, and whichever suits 
you. 

These are the two hands with which you want to get your work done. That means you want to explain the 
data. If you fix one of the hands to one position and not move. And let the other hand move freely. That is 
your output error model. Whereas, with the ARX's model that we fit. We are not only fixing the one of the
models but we are tying it so that we restrict the movement of the other hand. So clearly, the kind of 
processes that you can model is going to be limited, particularly if you think the left hand has the g and 



right hand has h, then this the moment h comes and ties together with g, the kind of processes are the 
deterministic processes that you can model is going to be restricted. At least, in output error model, you've
fixed your h and let g roam freely. So that I can actually figure out the correct g. I'm just giving you a very
symbolic and a qualitative explanation here. The theoretical explanation will come at a later stage. So it is
this joint parameterization that actually is the main culprit and we will show theoretically later on, we'll 
understand at least that indeed that it is a joint parameterization that is the main culprit. Okay. In fact this 
is a special case of joint parameterization where all the parameters in h are tied to the parameters in g. 
There is another case of joint parameterization, where h is partly tied, not the entire hand, a few fingers 
are tied, Okay. Something like that. Right. So it's not, the hand is not holding, the right hand is not tied to 
the left hand completely maybe, two fingers. So that there are additional degrees of freedom.That 
additional degrees of freedom can actually get you a better model. I mean probably take you closer to the 
truth. But it is, in this ARX's models specifically where it is not just jointly parameters, it's fully jointly 
parameterized. Partly jointly parameterized models can actually get you closer to the truth. Where we 
willencounter models such as R max models. So you have a range of possibilities, where you have output 
error model, where I do not bother to model the noise dynamics at all. And under open loop conditions, 
you are guaranteed that you will be able to recover the g, correctly. Then you have on the other extreme 
where h is parameterized there is a model that you're building but it shares all its parameters with g. Okay.
Which means that h is completely tied to G. 

Student: One thing, what if noise’s parameter is going to change?

Correct. Yeah. That is the thing that we don't discuss at this stage. I'm just showing you two extremes that 
have prevailed and that continue to prevail in the literature. There are intermediate ones and then there is 
one where g and h are independently parameterized. And I want to instill these concepts upfront. This 
notion of parameterization, so that when you're building a model you know clearly what are the degrees 
of freedom that you have that it can play an important role and so on. That is one point that is not 
sufficiently emphasized in many system identification courses. I mean, even if it is emphasize, its 
emphasize at a much later stage. I would like to bring that aspect upfront itself. So and it's a very good 
question that you asked. If I had an additional parameter in the noise model, which did not share the 
bench with g, then I would have had an additional degree of freedom and possibly that would have 
countered the joint parameterization that I have. Right. For example, in the ARX's model g and h, share 
the same parameters. 

(Refer Slide Time: 19:44)



Of course, not all parameters of g going to h but all parameters of h are present in g. Right. If I have an 
additional parameter, let's say, maybe c1or something like that then that could have counted, it could have
canceled the effect of the joint parameterizationand I would have probably ended up. For example, here 
we set for the output error model, we have assumed h of q inverse to be 1 but for the ARX model of first 
order that we fit h of q inverse, what would it be? If you recall the discussion that we had? Wow. 1 over 1 
plus a1 q inverse, because we assumed the predictor to be this right. V hat of k to be minus a1, v k minus 
1 or we said, v k is minus a1 v k minus 1 plus e k. Right, this is what we ended up assuming. Why, 
because we wanted to predictor to be linear in parameters. As a result h of q inverse is 1 over 1 plus a1 q 
inverse. So to answer your question, suppose, I had assumed, right. Suppose, I had assume h of q inverse 
to be 1 plus c1 q inverse over 1 plus a1 q inverse. Then the algorithm would have driven c1, such that it 
almost cancels out the effect of a1. Because it's estimates I say, almost. So that would have given you 
straightaway a good estimate of g. We didn't we didn't pursue this option. But you can think of this. Clear 
on, I mean, fit an R max model, specify the orders and see, if actually does well. This case study offers 
plenty of room for exploration. Okay. 

So to summarize it is the way you parameterize the plant and noise models that can make a big difference.
And why because your parameters are your knobs that you turn around and the way-- if you have fixed 
one knob you said, this knob is going, not going to be opened at all. I mean, not going to be touched. 
There's only one knob that you play around with. Fine. That is your output error model. But if you tie a 
thread for one of the knobs and say that whenever this rotates this way, the other knob is also going to 
rotate this way, so you don't have truly two degrees of freedom or that many degrees of freedom. The full 
degrees of freedom is available in what is known as a Box–Jenkins structure. Where g and h do not…


